p是椭圆x2 a2y2 b2 1上的任意一点 F1 F2是它的两个焦点 O为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 11:45:35
p是椭圆x2 a2y2 b2 1上的任意一点 F1 F2是它的两个焦点 O为
已知P是椭圆上的一点,F是椭圆的左焦点,且,则点P到椭圆左准线的距离

连接点P和椭圆的右焦点(不妨记为F2)由向量OQ=1/2(OP向量+OF向量)可知Q为PF的中点.又点O为FF2的中点,所以OQ为三角形FPF2的中位线所以PF2=2OQ=8,所以PF=2a-PF2=

已知F1,F2是椭圆的两个焦点,P为椭圆上一点,若角F1PF2=90度,求椭圆离心率的取值范围

对直角三角形的直角边使用余弦定理,其实就是勾股定理因为cos90°=0嘛.PF1+PF2=2aPF1²+PF2²=4c²∵2(PF1²+PF2²)≥(

已知A1A2是椭圆X^2/25+Y^2/16=1长轴上的两个顶点,P是椭圆上

以线段MN为直径的圆恒经过椭圆的焦点.不妨以右焦点F2(3,0)为例说明.设P(5cosa,4sina),A1(-5,0),A2(5,0)右准线的方程X=25/3A1P的方程为y=(4sina/(5c

已知F1F2是椭圆的两个焦点 p为椭圆上一点 角F1PF2=60

1)PF1^2+PF2^2-2PF1PF2cos60=F1F2^2PF1^2+PF2^2-PF1PF2=4c^2(PF1+PF2)^2-3PF1PF2=4c^2PF1PF2=(4a^2-4c^2)/3

已知 F1F2是椭圆 X^2/4+y^2=1的两个焦点,P 是椭圆上的点

答案为:1这一题只要你学了焦半径就很简单.首先e=椭圆上一点倒左(右)焦点的距离/这一点到左(右)准线的距离(这就是焦半径的公式).所以你设P(x,y)所以:绝对值PF1=a+ex绝对值PF2=a-e

已知P(3,4)是椭圆上的一点,F1.F2是椭圆的两个焦点.若PF1垂直于PF2,求椭圆的方程

1、焦点在X轴上2、焦点在Y轴上设F1(-c,0),F2(c,0)设F1(0,-c),F2(0,c)PF1+PF2=2aPF1+PF2=2aPF1²+PF2²=4c²PF

已知F1,F2是椭圆的两个焦点,P为椭圆上一点,∠F1PF2=60°求椭圆离心率用向量怎么做

应该是求离心率的取值范围吧?记∠PF1F2=x,则e=c/a=(2c)/(2a)=|F1F2|/(|PF1|+|PF2|),据正弦定理得e=sin∠F1PF2/(sin∠PF1F2+sin∠PF2F1

已知F1,F2是椭圆的焦点,P为椭圆上一点,∠F1PF2=60°.

设椭圆方程为 x2a2+y2b2=1(a>b>0),|PF1|=m,|PF2|=n.在△PF1F2中,由余弦定理可知,4c2=m2+n2-2mncos60°.∵m+n=2a,∴m2+n2=(

已知椭圆方程x2\a2+y2\b2=1(a>b>0),设F为椭圆的一个焦点,P是椭圆上的一点

1)设F2为另一焦点,易知y轴将线段|AB|,|FF2|垂直平分根据对称性,可知AFF1B四点构成等腰梯形,对角线相等,有AF1=BF,所以AF+BF=AF+AF1=2a,为定值2)由已知A(-a,0

已知F1,F2是椭圆的两个焦点,P是椭圆上一点,若∠PF1F2=15,∠PF2F1=75,则椭圆的离心率为?

F1F2=2ca^2=b^2+c^2PF2=2csin(15),PF1=2csin(75)PF1+PF2=2a=2c(sin(15)+sin(75))==2c(sin(45-30)+sin(45+30

已知F1 F2是椭圆的两个焦点,P为椭圆上的一点 ∠F1PF2=60度

1.由焦半径公式:F1P=a+exF2P=a-exF1F2=2c在△PF1F2中应用余弦定理cos60º=1/2=[(a-ex)²+(a+ex)²-4c²]/2

已知P为椭圆x24+y2=1上任意一点,F1,F2是椭圆的两个焦点,求:

(1)|PF1|•|PF2|≤(|PF1|+|PF2|2)2=a2=4,故:|PF1|•|PF2|的最大值是4;(2)|PF1|2+|PF2|2=(|PF1|+|PF2|)2−2|PF1|•|PF2|

已知点F1,F2是椭圆的两个焦点.点P在椭圆上,∠F1PF2=60度,求椭圆离心率的取值范围

余弦定理:F1F2^2=F1P^2+F2P^2-2F1P*F2Pcos∠F1PF2F1F2=2c而F1P+F2P=2a,所以F1P^2+F2P^2=(F1P+F2P)^2-2F1P*F2P=4a^2-

高二数学椭圆的应用 p是椭圆x2/4+y2/3=1上的点,F1,F2是椭圆的左右焦点,

是|PF1|与|PF2|的乘积吧?由焦半径公式可得,|PF1|*|PF2|=(a+ex)(a-ex)=a^2-e^2*x^2,由0

已知F1,F2是椭圆的两个焦点,若椭圆上存在点P,使得PF1⊥PF2,则椭圆离心率的取值范围是(  )

如图所示,下面证明椭圆的短轴的一个端点是到椭圆的中心距离最短的点.设椭圆上任意一点P(x0,y0),则x20a2+y20b2=1,可得y20=b2(1−x20a2).∴|OP|2=x20+y20=x2