p为角abc内一点,d,e,f分别是点p关于边ab,bc,ca所在直线的对称点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 07:06:39
证明:因为AP²=AD²+DP²=AF²+FP²BP²=BE²+EP²=BD²+DP²CP²
1.第一问题我做过在:http://zhidao.baidu.com/question/110502578.html2.由PD/AD+PE/BE+PF/CF=1知PD/AD,PE/BE,PF/CF中至
我的绝对是对的请仔细的看解法很简单为小学生量身定做1.观察三角形BEC与三角形BFC他们的面积一样而且他们有共同的底所以EF两个点在同一高度为什么呢因为三角形面积为底乘以高底相同面积相同所以高相同.2
图在哪里?再问:发不了啊,怎么发啊再答:插入图片?再问:关键我找不到设备啊,不能截图再答:那个到底是角度还是面积啊?再问:面积再答:设SAPE=x,SBPF=y,根据比例关系有:(x+35)/(y+8
相等.正三角形中AB=BC=AC,面积为S.2S=AD*BC=2S(PAB)+2S(PBC)+2S(PAC)=PE*AB+PF*BC+PG*AC=BC(PE+PF+PG),约掉BC,得AD=PE+PF
请换一种角度思考问题.如果直接靠计算边的关系难以实现的话,就想一想借助面积来推得边的关系.设三条高分别为h1,h2,h3,所对应的边是x,y,z,所对应的垂线段为a,b,c.根据面积相等可得,1/2*
这道题需要画图,你会画图不?我只跟你说在有图的基础上做辅助线以及之后的步骤.证明:延长FP交AB于点G,延长DP交BC于点H,因为DP//AB,FG//AC,所以四边形AGPD为平行四边形,所以DP=
西姆松定理,自己看奥赛书都有这个的证明证明一:△ABC外接圆上有点P,且PE⊥AC于E,PF⊥AB于F,PD⊥BC于D,分别连DE、DF.易证P、B、F、D及P、D、C、E和A、B、P、C分别共圆,于
设S△APE=x,S△BPF=y,∵S△BDP=40,S△CDP=30,S△CEP=35,∴PEPB=3530+40=12,∴x84+y=12①,同理可得40y+84=30x+35②,解关于①②的方程
证明:连接ME、MF、BF、CE.因为PE垂直于AB,PF垂直于AC所以,角BEP=角CFP=90度因为角ABP=角ACP所以角BPE=角CPF延长BP至Q,交AC于Q.则,角BPE=角CPQ所以,角
设p为三角形ABC内一点,D,E,F分别为P到BC,CA,AB所引垂线的垂足,求使BC比PD+CA比PE+AB比PF为最小的P点重心
显然相等.连结AP,BP,CP.由勾股定理易得:AD²+BE²+CF²=(AP²-DF²)+(BP²-PE²)+(PC²
因为没图,设D,E,F分别在AB,BC,CA上,连接PA,PB,PC则△ABC被分为3个小三角形,△PAB,△PBC,△PCA△ABC的面积=△PAB的面积+△PBC的面积+△PCA的面积设△ABC的
证明:由三角形的面积很容易证明.S△ABC=S△PAB+S△PCB+S△PACS△PAB=AB*PD/2S△PCB=BC*PD/2S△PAC=AC*PF/2又:等边三角形AB=BC=CA所以:S△AB
S5-S6+S1-S2+S3-S4=pai/2*((AF^2/4-BF^2/4)+(BD^2/4-CD^2/4)+(CE^2/4-AE^2/4))不考虑前面的系数,即=k*(AF^2-BF^2+BD^
S△ABC=1/2×AB×PF+1/2×AC×PE+1/2×BC×PD=1/2×BC×(PD+PE+PF)S△ABC=1/2×BC×AM ∴PD+PE+PF=AM希望帮得到你\(^o^)/~
PD+PE+PF=三角形的一条高因为他是正三角形嘛.点P到三边距离分别为L1、L2、L3则SΔABC=SΔAPB+SΔBPC+SΔCPA=(AB*L1+BC*L2+CA*L3)/2=(L1+L2+L3