p为角abc内一点,d,e,f分别是点p关于边ab,bc,ca所在直线的对称点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 07:06:39
p为角abc内一点,d,e,f分别是点p关于边ab,bc,ca所在直线的对称点
如图,点P是△ABC内任意一点,PD⊥AB,PE⊥BC,PF⊥AC,垂足分别为D.E.F,

证明:因为AP²=AD²+DP²=AF²+FP²BP²=BE²+EP²=BD²+DP²CP²

已知P为△ABC内任意一点,连AP,BP,CP并延长分别交对边于D,E,F

1.第一问题我做过在:http://zhidao.baidu.com/question/110502578.html2.由PD/AD+PE/BE+PF/CF=1知PD/AD,PE/BE,PF/CF中至

锐角三角形ABC,E、F分别为AB、AC上两点,连接BF、CE相交于ABC内一点P,已知:三角形BPC面积为12,三角形

我的绝对是对的请仔细的看解法很简单为小学生量身定做1.观察三角形BEC与三角形BFC他们的面积一样而且他们有共同的底所以EF两个点在同一高度为什么呢因为三角形面积为底乘以高底相同面积相同所以高相同.2

如图,P为三角形ABC内一点,AP,BP,CP的延长线分别交BC,AC,AB于点D,E,F,把三角形ABC分成六个小三角

图在哪里?再问:发不了啊,怎么发啊再答:插入图片?再问:关键我找不到设备啊,不能截图再答:那个到底是角度还是面积啊?再问:面积再答:设SAPE=x,SBPF=y,根据比例关系有:(x+35)/(y+8

P是正三角形ABC内任意一点,PE⊥AB,PF⊥BC,PG⊥AC,AD⊥BC,E,F,G,D为垂足,试探讨AD与PE+P

相等.正三角形中AB=BC=AC,面积为S.2S=AD*BC=2S(PAB)+2S(PBC)+2S(PAC)=PE*AB+PF*BC+PG*AC=BC(PE+PF+PG),约掉BC,得AD=PE+PF

已知P是三角形ABC内任意一点,过P作AB、AC、BC的垂线PD、PE、PF,垂足为D、E、F,问PD、PE、PF与三角

请换一种角度思考问题.如果直接靠计算边的关系难以实现的话,就想一想借助面积来推得边的关系.设三条高分别为h1,h2,h3,所对应的边是x,y,z,所对应的垂线段为a,b,c.根据面积相等可得,1/2*

在等边三角形ABC中,P为ΔABC内一点,PD∥AB,PE∥BC,PF//AC,D,E,F分别在AC,AB和BC上,试说

这道题需要画图,你会画图不?我只跟你说在有图的基础上做辅助线以及之后的步骤.证明:延长FP交AB于点G,延长DP交BC于点H,因为DP//AB,FG//AC,所以四边形AGPD为平行四边形,所以DP=

如图11,三角形ABC内接于圆,P为弧BC上一点,PD垂直AB于D,PE垂直BC于E,PF垂直AC于F.求证:D,E,F

西姆松定理,自己看奥赛书都有这个的证明证明一:△ABC外接圆上有点P,且PE⊥AC于E,PF⊥AB于F,PD⊥BC于D,分别连DE、DF.易证P、B、F、D及P、D、C、E和A、B、P、C分别共圆,于

如图所示.已知P为△ABC内一点,AP,BP,CP分别与对边交于D,E,F,把△ABC分成六个小三角形,其中四个小三角形

设S△APE=x,S△BPF=y,∵S△BDP=40,S△CDP=30,S△CEP=35,∴PEPB=3530+40=12,∴x84+y=12①,同理可得40y+84=30x+35②,解关于①②的方程

点P为三角形ABC内一点,使得角ABP=角ACP,过点P作PE垂直AB于E,PE垂直AC于F,点M,N分别为线段BC,E

证明:连接ME、MF、BF、CE.因为PE垂直于AB,PF垂直于AC所以,角BEP=角CFP=90度因为角ABP=角ACP所以角BPE=角CPF延长BP至Q,交AC于Q.则,角BPE=角CPQ所以,角

设p为三角形ABC内一点,D,E,F分别为P到BC,CA,AB所引垂线的垂足,求使BC比PD+CA比PE+AB比PF为最

设p为三角形ABC内一点,D,E,F分别为P到BC,CA,AB所引垂线的垂足,求使BC比PD+CA比PE+AB比PF为最小的P点重心

点P是三角形ABC内任意一点,PD⊥AB,垂足为D,PE⊥BC,垂足为E,PF⊥AC,垂足为F,

显然相等.连结AP,BP,CP.由勾股定理易得:AD²+BE²+CF²=(AP²-DF²)+(BP²-PE²)+(PC²

如图,已知P是等边△ABC内任意一点,过点P分别向三边作垂线,垂足分别为D,E,F.求证:PD+PE+PF是不变的值

因为没图,设D,E,F分别在AB,BC,CA上,连接PA,PB,PC则△ABC被分为3个小三角形,△PAB,△PBC,△PCA△ABC的面积=△PAB的面积+△PBC的面积+△PCA的面积设△ABC的

已知p是等边△ABC内任意一点,过点P分别向三边做垂线,垂足分别为点D.E.F,试证明PD+PE+PF是不变的值.

证明:由三角形的面积很容易证明.S△ABC=S△PAB+S△PCB+S△PACS△PAB=AB*PD/2S△PCB=BC*PD/2S△PAC=AC*PF/2又:等边三角形AB=BC=CA所以:S△AB

自三角形ABC内一点P,分别向BC,CA,AB边引垂线,垂足依次为D,E,F.以BD,CD,CE,AE,AF,BF为直径

S5-S6+S1-S2+S3-S4=pai/2*((AF^2/4-BF^2/4)+(BD^2/4-CD^2/4)+(CE^2/4-AE^2/4))不考虑前面的系数,即=k*(AF^2-BF^2+BD^

如图,在等边三角形ABC中,P为三角形ABC内任意一点,PD垂直BC于D,PE垂直AC于E,PF垂直AB于F,请说明:P

S△ABC=1/2×AB×PF+1/2×AC×PE+1/2×BC×PD=1/2×BC×(PD+PE+PF)S△ABC=1/2×BC×AM ∴PD+PE+PF=AM希望帮得到你\(^o^)/~

在三角形ABC中,角A=角B=角C,P为三角形内任意一点,PD垂直BC于D,PE垂直AC于E,PE垂直AB于F,AB=a

PD+PE+PF=三角形的一条高因为他是正三角形嘛.点P到三边距离分别为L1、L2、L3则SΔABC=SΔAPB+SΔBPC+SΔCPA=(AB*L1+BC*L2+CA*L3)/2=(L1+L2+L3