证明数域Pn的任意一个子空间W必是某一个n元齐次线性方程组的解空间
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 21:10:20
第一步:任取α=(a1,a2,a3),β=(b1,b2,b3)∈U和任意的λ,μ∈R.第二步:证明λα+μβ∈U.就可以了.证明:任取α=(a1,a2,a3),β=(b1,b2,b3)∈U和任意的λ,
先取V的一组基{e},这样就可以用具体的坐标来描述所有的东西假定m=dim(W1),k=dim(W2)=n-m,只需讨论m和k都非零的情况,余下的是平凡的取W1的一组基,这组基在{e}下的坐标表示是一
反例:取V为2维向量空间,W为向量(1,0)生成的子空间,U1为向量(0,1)生成的子空间,而U2为向量(1,1)生成的子空间.易验证U1∩W={0},U2∩W={0},再由维数讨论可得V=U1⊕W,
只用向量集合、向量空间的定义就可以解决了啊.我用普通语言直接表述吧,你用数学的形式再表达出来就行了:设某向量X是属于(U交W)的任意向量,注意,这个任意很重要.那么,X一定是属于U(或者W)的.又由于
验证W对于V3的两种运算是封闭的即可.首先知W非空对任意p属于w,则存在p1,p2,使得p=p1*a+p2*b kp=kp1*a+kp2*b,kp1,kp2属于R,则可知kp属于W任意p,q
设α,β∈W^⊥则任意γ∈W,(α,γ)=0=(β,γ)故(α+β,γ)=(α,γ)+(β,γ)=0+0=0故α+β⊥γ=>α+β∈W^⊥且(kα,γ)=k(α,γ)=0故kα⊥γ=>kα∈W^⊥故W
看看这个:σ:F[x]→F[x²]f(x)→f(x²)
零变化属于U所以U分非空任意σ1σ2属于U那么对于任意x属于V有σ1(x)=k1xσ2(x)=k2x所以(σ1+σ2)(x)=(k1+k2)x所以(σ1+σ2)属于U任意σ1属于Um属于F对于任意x属
正确.因为与A可交换的矩阵为对角矩阵.[-1,0;0,0],[0,0;1,0],[2,0,0,1]为所求的一组基.这样可以么?
设B,C是W中任意两个元素,则(kB)A=k(BA)=k(AB)=A(kB),即kB∈W.(B+C)A=BA+CA=AB+AC=A(B+C),即B+C∈W,因此W对于加法和数乘运算封闭,W是一个子空间
设V1包含于V2V1∪V2=V2,当然是子空间.另一方面:若V1∪V2是子空间但无包含关系.则有a∈V1但a不属于V2b∈V2但b不属于V1则有a+b∈V1∪V2情况1:若a+b∈V1,则b=-a+(
分两步:f:证明存在性点与直线可构成一平面a,过此点可做与平面a线垂直平面b.平面b垂直a中任一条直线.s:证明唯一性假设过此点有两平面c,d与直线垂直,在平面a中则有ca交线,da交线过同一点垂直于
设V是数域P上的n维线性空间,W是V的一个s维子空间,那么,取定W的一个基:E1,E2,...,Es,将W的这个基扩充为V的一个基,记为,E1,E2,...,Es,Es+1,...,En现在我们构造一
设矩阵为A,如下步骤:1)先求出矩阵A的特征值λ1,λ2,……,λn2)对应于每个特征值解方程组|λE-A|=03)上面每个方程组的解都是对应特征值的一个特征向量空间,解的维数就是特征空间的维数,解得
m*n个元素中只有一个,明显是1,其余的是0,这样的矩阵有m*n个1,这m*n个矩阵构成一组基2,任意m*n阶矩阵可由这m*n个矩阵线性表示(普通意义上的矩阵加法和数乘)所以求证所有m×n阶矩阵的集合
证明子集是子空间,只需验证对加法和数乘封闭
很显然,若V1包含于V2,则两者之并就是V2,是V的子空间.反之,用反证法证明.若两个子空间V1并V2=W是V的子空间,但V1不是V2的子集,V2也不是V1的子集,因此存在a位于V1但不位于V2,b位