证明:如果A是一个实对称矩阵,且满足A^2=0,则A=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:33:53
这个结论貌似是不正确的很容易可以举出反例:A=[0-1;10]A满足(A^T)A=A(A^T)=单位矩阵,然而A不是对称矩阵.这个题应该是少了什么约束条件吧?
a[i][j]=a[j][i]b[i][j]=b[j][i]a+b=c则c[i][j]=a[i][j]+b[i][j]=a[j][i]+b[j][i]=c[j][i]所以c是对称矩阵,也就是a+b是对
用基本的矩阵知识就行.使用矩阵乘积的定义.设A是n阶方阵,第i行j列元素是aij.A的转置记为A^T,则0=A^2=A×A^T所以A×A^T的主对角线元素(a11)^2+(a12)^2+.+(a1n)
A为实对称矩阵,则A~ΛΛ=P^(-1)AP,A=PΛP^(-1)B=A^2-2A-E=PΛ^2P^(-1)-2PΛP^(-1)-PEP^(-1)=P(Λ^2-2Λ-E)P^(-1)P^(-1)BP=
证明:1.因为(A+A')'=A'+(A')'=A'+A=A+A'所以A+A'是对称矩阵2.二次型x'Ax的矩阵即0.5(A+A')所以x'Ax=x'(0.5*(A+A'))x3.由(2)知x'(0.
提示:是正定对称矩阵.于是由习题2存在正定矩阵S,使得=.再看一下U应该怎样取.]
你的题目有问题啊,C用不上?A,B正定,他们的差不一定对称啊.比如A=(101;210)B=(100,4;1,101)
由于A是对称矩阵,因此存在正交矩阵T使得T^(-1)AT为对角矩阵,其中对角线上的元素为A的所有特征值,因此只要证A的特征值只有0和1即可由于A^2=A,所以A的特征是0或1,证毕
这个就按照合同的定义和脱衣原则就可以证明.A=P'diagP,其中diag是对角阵,P是可逆矩阵,这是合同的定义.那么A'=(P'diagP)'=P'diagP,第二个等号就是脱衣原则.就是去括号后从
设A为n阶方阵,令A*A=B,由于对称阵,因此有对任意m属于[1,n]Bmm=Am1^2+Am2^2+...+Amn^2=0因此Am1=Am2=...Amn=0由m的任意性可以知道A的每个元素为0,即
回忆一下求P的过程就知道了,你也可以把特征向量加倍重新构造P.自己动手操作一下,对这个问题会有更深刻的理解.再问:求P的时候是通过求特征值特征向量,再将属于同一个特征值的特征向量正交化,把所有特征向量
由于A是对称矩阵,所以AT=A.CT=((BT)AB)T=(BT)(AT)(BTT)=(BT)AB=C所以C也是对称矩阵.
证:由A正定,对任意非零n维列向量x,都有f(x)=x'Ax>0.特别取x=εi=(0,...,0,1,0,...,0)',--第i个分量为1其余为0则有f(εi)=εi'Aεi=aii>0.
若A正定,则存在正交矩阵T,A=T^(-1)PT.其中P=diag(a1,…an)为A的标准型,ai>0.记Q=diag(√a1,…√an),取B=T^(-1)QT即可!若A=B^2,B实对称,类似上
如果λ是A的特征值,x是其特征向量,即Ax=λx左乘x^H(x的共轭转置)得到λ=(x^HAx)/(x^Hx),分子和分母都是实数
因为A为反对称矩阵则A=-A^T(A^2)^T=(A^T)2=(-A)(-A)=A^2是实对称矩阵再问:a是反对称矩阵b实对称矩阵证明:(1)ab-ba是对称矩阵?(2)ab是反对称矩阵的充分必要条件
(T^-1AT)的转置=T的转置*A的转置*T^-1的转置因为T是正交阵,所以T的转置=T-1因为A是实对称阵,所以A的转置=A则(T^-1AT)的转置=T的转置*A的转置*T^-1的转置=T^-1*
因为矩阵A为实对称矩阵所以存在可逆矩阵P,使得P^TAP=Λ=diag(λ1,λ2,...λn)因为特征值λi>0所以矩阵Λ为正定矩阵所以矩阵Λ的正惯性指数=n又因为矩阵A合同于矩阵Λ所以矩阵A的正惯
一楼是利用实对称矩阵是正规矩阵,所以可以对角化.不过这个是相似标准型的内容,开学到现在可能还没学到这部分内容吧.其实没那么麻烦.你看看A*A的对角线是什么.由于对称性,第一个对角线元素就是a11^2+
显然不对,比如矩阵A:第一行3,4第二行4,6.这不是对称阵,但是它是正定矩阵.正定判定如下:计算二次型(x1,x2)A(x1,x2)^T=3(x1^2+2x1x2+2x2^2)=3((x1+x2)^