设非零向量b可由向量组a1,a2,...as线性表出,证明表示方法唯一的充要条件
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 18:48:49
证明:由向量组[a+c,b+c]线性相关,得线性关系b+c=k(a+c)+m化解得(1-k)c=k*a+m-b假设k=1,得0=a+m-b,即b=a+m线性关系这与已知向量组[a,b]线性无关相矛盾,
因为b可由向量a1,a2,...,as线性表示,且表示法唯一.所以方程组(a1,a2,...,as)x=b有唯一解所以r(a1,a2,...,as)=r(a1,a2,...,as,b)=s所以a1,a
证明:设k1a1+k2a2+k3a3=b若b=0由0向量的唯一表示,证明a1,a2,a3线性无关若b不等于0向量,则k1,k2,k3至少一个不为0向量,不妨设为k3,若a1,a2,a3线性相关,设存在
向量组B线性无关(b1,b2,...,br)X=0只有零解(a1,a2,...,as)KX=0只有零解--因为向量组A线性无关--所以KX=0只有零解r(K)=r(K的列数).再问:貌似简略了点儿,能
/>线性相关.2.A的逆的特征向量也是A的特征向量,设β是A的属于特征值a的特征向量则Aβ=aβ,得k+3=a2k+2=akk+3=a得k=1或k=-2.3.由已知,|A|=0,得t=-2.再问:13
题目中K应该是nXr矩阵.首先,r(b1,b2,...,br)=r[(a1,a2,...,an)K]再问:r(AB)
不能.如:(1,1)可由(1,0),(0,1)线性表示再问:就是选择题第四个希望老师详细解答下再答:(D)正确这是个定理,教材中有的再问:只知道能得到R(A)>=R(B)然后还有就是小相关大相关我知道
如果猜得不错,ni是第i个分量为1,其他分量都是0的向量.把A,N都看成矩阵,ai,nj是列向量.N可由A线性表示,意思就是有矩阵C=c11c21…………cn1c12c22…………cn2…………………
a-b=c(1)a+2b=3c(2)(1)*3-(2)得2a=5b所以a=2.5b,所以它们是平行的
不一定是,显然如果abc同向就是了,如果不是,考虑一个三角形的三条边,令一条为a另一条为b,第三边的三分之一为c,则等式满足,但这时候ab显然不是平行的再问:但我们老师说这道题平行的呀?这该如何解释呢
证一.由于a1,a2,...,am,B线性相关所以存在一组不全为0的数k1,k2,...,km,k使得k1a1+k2a2+...+kmam+kB=0则必有k≠0.否则k1a1+k2a2+...+kma
向量组A可由向量组B线性表示不可以推出A与B等价向量组A可由向量组B线性表示,向量组B可由向量组A线性表示,则向量组A与向量组B等价是要同时满足才可以
假设线性相关,那么存在不全为0的c1、c2、……cs、d使得:c1a1+c2a2+.……+csas+d(b1+b2)=0显然d不等于0,因为等于0,那么a.就线性相关了.那么b2=(-c1a1-c2a
向量OP=(x,sinx)向量OQ=向量m*向量OP+向量n=(2x+Pi/3,1/2sinx)Q点坐标(2x+Pi/3,1/2sinx)Q点轨迹y=1/2sin(x/2-Pi/6)最大值A=1/2,
证明:由于向量组a1,...,as可由向量组b1,...,bt线性表示,所以R(a1,...,as)≤R(b1,...,bt)≤t又s>t,得R(a1,...,as)
a(1,3),b(0,2),c(3,13).设a=bx+cy,即(1,3)=(0,2x)+(3y,13y)得1=0+3y,3=2x+13y,y=1/3,x=-2/3则a在b、c组成的基下表示为(-2/
对线性相关:k1a1+k2a2+...+knan=0所以:a1=-(k2/k1)a1-...-(kn/k1)an
R(A)=R(A,B)..
选D.向量组1:a1,a2...ar可由向量组2:β1,β2...βs线性表示,可知向量组1的秩小于或等于向量组2的秩,从而有向量组1的秩必小于或等于s.若加上条件r>s,则可知向量组1线性相关.
需要证明两点,一是向量组A0线性无关,二是向量组A中每一个向量都可以由向量组A0线性表示.第二点已经满足,只证明第一点(可以用反证法,假设A0线性相关,则A中每一个向量可以由向量组A0线性表示,且至少