设随机变量X服从拉普拉斯分布,概率密度为f(x)=Ae

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:48:15
设随机变量X服从拉普拉斯分布,概率密度为f(x)=Ae
设随机变量X服从参数为3的泊松分布,则X平方数学期望,

依题意可以得到λ=3,;所以E(X)=D(X)=3;而D(X)=E(X^2)-E(X)^2=3;所以E(X^2)=E(X)^2+D(X)=12;

数学概率随机变量X服从拉普拉斯分布,其概率密布为f(x)=(1/2)e^-|x|计算E(x),D(x),..

∫(1/2)xe^-|x|=0=E(x),因为xe^-|x|是奇函数E(x^2)用分布积分做,因为d(x^2)/dx=2x由上一行知道是0,所以只有一项积分,又由奇偶性最后结果出来是2因此D(x)=E

设随机变量X与Y相互独立,且服从同一分布,X的分布律为

由于:P(X=0,Y=0)=P(X=1,Y=0)=P(X=0,Y=1)=P(X=1,Y=1)=1/4.P(Z=1)=P(X=1,Y=0)+P(X=0,Y=1)+P(X=1,Y=1)=3/4.P(Z=0

设随机变量X与Y相互独立,且都服从参数为3的泊松分布,证明X+Y仍服从泊松分布,参数为6

这个用泊松分布可加性来做,很简单X,Y相互独立且分别服从p(λ1),p(λ2)那么Z=X+Yp(λ1+λ2)参考资料里有他的证明

设随机变量X与Y相互独立,且都服从参数为3的泊松分布,证明X+Y服从泊松分布,参数为6

要用到微积分吗?具体公式给下回答:=Σ(3^I*e^(-3)I/I!)(3^(K-I)*e^(-3)I/(K-I)!)=Σ(3^I*3^(K-I)e^(-3)*e^(-3)/I!*(K-I)!)=Σ[

设随机变量X服从二项分布B(3,0.4),求随机变量Y=X(X-2)的概率分布

X服从B(3,0.4),故X可取值为0,1,2,3当X=0时,Y=0当X=1,Y=-1当X=2,Y=0当X=3,Y=3所以,Y是个离散型随机变量,可取的值为-1,0,3P(Y=-1)=P(X=1)=C

设随机变量X,服从参数T,T>0的泊松分布,求E(X平方)

E(X^2)=E(X^2-X+X)=E[X(X-1)+X]=E[X(X-1)]+E(X)=∑(k=0→∞)k(k-1)T^ke^(-T)/k!+∑(k=0→∞)kT^ke^(-T)/k!=∑(k=2→

设随机变量X服从自由度为k的t分布,证明随机变量Y=X^2服从自由度为(1,k)的F的分布

因为X~t(k),由定义可令X=A/根号下B/k,其中A~N(0,1),X^2(k)分布Y=X^2=A^2/(B/k),因为A~N(0,1),所以A^2~X^2(k)Y=(A^2/1)/(B/K),则

设随机变量X服从标准正态分布,则其分布函数Ф(0)=

以为是标准正态分布,分布函数关于y轴对称,Ф(0)刚好是y轴左半部分面积.因为总面积为1(总概率为1),面积的一半,即Ф(0)=0.5.

设随机变量X服从指数分布,求随机变量Y=min(X,2)的分布函数

可以利用Y与X的关系如图求出分布函数.经济数学团队帮你解答,请及时采纳.再问:再问:能不能帮我在做一下50题再答:这个我不会。前面的问题已经解决,请采纳!

设随机变量X服从指数分布,如果该分布80%的分位点等于2,求其密度函数.

 最后结果算出来是再问:不懂啊。。。。您看哦,他让求指数分布的密度函数,就是说求他的参数拉姆达,怎么求呢。。。辛苦大神求讲解。。。再答:我认为分布80%的分位点等于2,可得到上述的方程,最后

设随机变量X服从分布U[0,5],则概率p(2

U是均匀分布所以就很简单了3\5

服从拉普拉斯分布的随机变量X的概率密度为f(x)=ke^-|x|,求常数k及分布函数F(x)

f(x)=ke^-|x|相当于正负半轴上的两个对称的指数分布,所以k=1/2xx)(1/2)e^xdx=e^x/2x>0,F(x)=∫(-∞-->x)(1/2)e^xdx=∫(-∞-->0)(1/2)

设随机变量X服从参数为4的泊松分布,则DX =____________.

泊松分布的期望Ex=λ=4,Dx=λ=4PS:泊松分布式(λ^k)/k!*e(-λ)

概率论!设随机变量X与Y服从同一分布,其分布律为X(Y)~

再问:能不能具体解释一下再答:再问:第二行和第三行我不是很懂?为什么是1/4?再答:P(X=0,Y=-1)+P(X=-1,Y=-1)+P(X=1,Y=-1)=P(Y=-1)=1/4但是P(X=-1,Y

概率论求解答.设随机变量X服从标准正态分布,求随机变量Y=1-2|X|的分布密度.

再问:为什么那里要加绝对值?再答:公式。针对单调增和单调减

服从拉普拉斯分布的随机变量ξ的概率密度φ(x)=Ae^f(x)=ke^-|x|求系数A,

就是说在正半轴φ(x)=ke^(-x)(x>0)在负半轴φ(x)=ke^x(x<0),它们都是指数函数,且关于y轴对称.求A可对函数求积分,由于对称性,两边积分应该相等,而和是1,所以一边