设矩阵A 满足A3=O ,那么A2 A E 不可逆
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 08:59:08
2题的解法一样 根据要证明可逆的矩阵凑积=单位矩阵的多项式 2题过程如下图:
都是可逆的.经济数学团队帮你解答.请及时评价.
⑴设k1a1+k2a2+k3a3=0①A①-k1a1+k2a2+k3﹙a2+a3﹚=0即-k1a1+﹙k2+k3﹚a2+k3a3=0②A②得到k1a1+﹙k2+2k3﹚a2+k3a3=0③③-①2k3
A(A+2I)=3I|A(A+2I)|=|A||A+2I|=3所以|A|不等于0且|A+2I|不等于0所以A和A+2I都可逆
假设 λ 为A的特征值,因为A3+A2+A=3E,所以 λ3+λ2+λ-3=0.即 (λ3-1)+(λ2-1)+(λ-1)=0,得(λ-1)(λ2+2λ+3)=0.解得,
R(A)+R(B)再问:能具体解释一下吗再答:可用基础解系证明。设R(A)=r,R(B)=s由AB=O知道,B的列向量都是AX=O的解向量,但B的列向量组只是AX=O的所有解向量的一个部分组,所以B的
A(a1,a2,a3)=(a1+a2,-a1+2a2-a3,a2-3a3)=(a1,a2,a3)KK=1-101210-1-3等式两边取行列式,由于|a1,a2,a3|≠0,所以|A|=|K|=-8.
由于(A+2E)(A-2E)=A^2-4E=-3E,所以(A+2E)(-A/3+2E/3)=E,因此A+2E可逆.
设矩阵A满足A^2=E.===>(A+2E)(A-2E)=5E===>A+2E的逆矩阵为0.2(A-2E).
A²-5A+6E=E(A-2E)(A-3E)=E所以A-2E可逆其逆矩阵为A-3E再问:(A-2E)(A-3E)=A²-5AE+6E^2。不等于A²-5A+6E=E再答:
A2-5A+5E=A2-5A+6E-E=(A-2E)(A-3E)-E=O(A-2E)(A-3E)=E矩阵A-2E可逆,其逆矩阵=A-3E
因为A^2-A-2E=0所以A(A-E)=2E所以A可逆,且A^-1=(1/2)(A-E)再问:额。。。没了??求不出A的逆矩阵的值吗再答:这样就可以了再问:那A+2E的逆矩阵再答:因为A^2-A-2
1证明:若矩阵A^2=I,A不等于I,则A+I不可逆.证明:首先因为A与A可乘(条件中由A^2),所以A是方阵(不妨设为n阶).因为A^2=I,所以(A+I)(A-I)=O,因为A≠I,所以A-I≠O
再问:第三行等号左边那个E是1吧。?再答:是E再答:单位矩阵再答:再问:嗯嗯不过还是有点不明白A的逆矩阵和E-A的逆矩阵怎么求的。图上是全部的步骤了么?谢谢(^_^)再答:第三步只是把2除了过去,已经
因为A3+B11=11A+3B33=1733,所以11A+3B=17,因为A和B都是自然数,因此A=1,B=2,所以A+B=3.故选:B.
设λ是A的特征值则λ^3-2λ^2+4λ-3是A^3-2A^2+4A-3E的特征值而A^3-2A^2+4A-3E=0,零矩阵的特征值只能是0所以λ^3-2λ^2+4λ-3=0.λ^3-2λ^2+4λ-
再问:为什么是330不是003呀?再答:因为它的秩为2,如果是0,0,3的话,秩就是1了。再问:我就是这个地方不明白,可以再说清楚一点吗π_π再答:实对称矩阵必相似于一个对角矩阵,且对角矩阵的对角元素
A^2-A-2I=OA(A-I)=2I所以A可逆A^-1=1/2(A-I)
(A-2E)(A+E)=0所以r(A+E)小于等于n-r(A-2E)即r(A-2E)+r(A+E)小于等于n又因为r(A-2E)+r(A+E)大于等于r(A-2E,A+E)=r(A-2E,3E)=n所