设矩阵A满足A^2=E.证明:A+2E是可逆矩阵.
设矩阵A满足A^2=E.证明:A+2E是可逆矩阵.
设矩阵A满足A的平方=E,证明A+2E是可逆矩阵
n阶矩阵A满足A²-3A+2E=0,-证明A-3E是可逆矩阵
设方阵A满足A*A-A-2E=0,证明矩阵A+E可逆,并求它.
设N阶矩阵A,B满足条件A+B=AB 1证明A—E是可逆矩阵,并求其逆 2证明AB=BA
设n阶矩阵A满足A^2=A,求A的特征值,并证明E+A可逆.
设N阶矩阵A满足A^2=A,证明E-2A可逆,且(E-2A)^-1=E-2A.求证明过程.
设n阶矩阵A满足A(的平方)-A-2E=0,证明A及A+2E都可逆,并求出这两个逆矩阵
设n阶逆矩阵A满足A^2-3A-6E=0 证明2E-A可逆并求其逆矩阵急
设n阶方针A满足A^2-5A+5E=0.证明矩阵A-2E可逆,并求其逆矩阵
设矩阵A满足A^3-2A^2+9A-E=0,证明A和A-2E都是可逆矩阵,并求出它们的逆矩阵.关键是第二个
设方阵A满足A^2-3A-10E=0,证明:A与A-4E是可逆矩阵,并求A与(A-4E)的逆矩阵