设椭圆x2 m2加y24等于1过点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 02:16:53
设|F1P|=x,|PF2|=y,c=5−4=1,∴|F1F2|=2,在△PF1F2中利用余弦定理可得cos30°=x2+y2−42xy=20−2xy−42xy=32求得xy=16(2-3)∴△PF1
椭圆x29+y24=1中焦点为(±5,0)∴双曲线的焦点为(±5,0)∴c=5,焦点在x轴上∵双曲线的离心率等于52∴a=2∴b2=c2-a2=1∴x24-y2=1故答案为:x24-y2=1.
第一题直接列式子带入求解就好了.第二题ABF2的面积等于AF1F2加上BF1F2.也就是(YA+YB)*2F,要用到第一问求出来的AB的纵坐标再问:学霸能详细列出式子吗,很久之前学的东西忘掉了。。。再
由于过点(-2,√3)所以4/m²+3/4=1m²=16所以c²=16-4=12c=2√3所以,焦距=2c=4√3再问:分母能用汉字表达吗?出现了乱码!再答:由于过点(-
由题意,设圆心为(0,a),半径为r,则x2+(y-a)2=r2,因为圆过椭圆x25+y24=1的右焦点且与其右准线相切,并且椭圆x25+y24=1的右焦点为(1,0),其右准线为:x=5所以1+a2
∵c=3+4=7,令x=7代入x23-y24=1可得,y2=163,则过双曲线x23-y24=1的焦点且与x轴垂直的弦长为2163=833.故答案为:833.
再问:有点慢再问:一带正电的粒子其重力不计,且电荷量为q,质量为m,以速度v从坐标原点沿着y轴正方向射入磁感应强度为b的圆形匀强磁场区域,磁场方向垂直纸面向外,粒子飞出磁场区域后,从b处穿过x轴进入场
∵椭圆方程为x23+y24=1,∴-2<y<2∵直线y=m与椭圆x23+y24=1有两个不同的交点,∴-2<m<2故答案为:(-2,2)
设N(x,y),A(x1,y1),B(x2,y2),则x129+y124=1①,x229+y224=1②①-②,可得:(x1-x2)x9+(y1-y2)y4=0∴y1-y2x1-x2=-4x9y∵动弦
因为方程x2m2+y2(m−1)2=1表示准线平行于x轴的椭圆,所以椭圆的交点在y轴上,所以0<m2<(m-1)2,解得m<12且m≠0.故选D.
∵点H在椭圆x29+y24=1上,∴H(3cosθ,2sinθ),∵过椭圆x29+y24=1上一点H(3cosθ,2sinθ)作圆x2+y2=2的两条切线,点A,B为切点,∴直线AB的方程为:(3co
由题意可得,c2=a2+b2=m2+12+4-m2=16∴c=4焦距2c=8故选C
椭圆x28+y24=1的右焦点是F(2,0).∵抛物线y2=2px的焦点与椭圆x28+y24=1的右焦点重合,∴抛物线y2=2px的焦点是F(2,0),∴p=4.故选:D.
设A(x1,y1),B(x2,y2)则PA、PB的方程分别为x1x+y1y=2,x2x+y2y=2,而PA、PB交于P(x0,y0)即x1x0+y1y0=2,x2x0+y2y0=2,∴AB的直线方程为
∵椭圆x29+y24=1中,|x|≤3,|y|≤2,圆(x-a)2+y2=9的圆心坐标(a,0),半径r=3.∴若椭圆x29+y24=1与圆(x-a)2+y2=9有公共点,则实数a的取值范围|a|≤6
∵|PF1|:|PF2|=2:1,∴可设|PF1|=2k,|PF2|=k,由题意可知2k+k=6,∴k=2,∴|PF1|=4,|PF2|=2,∵|F1F2|=25,∴△PF1F2是直角三角形,其面积=
椭圆方程是不是x^2+y^2/4=1
C:x²/a²+y²/b²=1(a>b>0),焦点在x轴上椭圆C过点(0,2),那么b=2∵e=c/a=√2/2∴a=√2c又a²=b²+c
(1)∵抛物线y2=8x的焦点坐标为F(2,0)∴椭圆x2m2+y2n2=1(m>0,n>0)的右焦点为F(2,0),可得m2-n2=4…①∵椭圆的离心率e=ca=12,∴m2−n2m2=14…②联解
设P点坐标为(√5sinθ,2cosθ)F1(-1,0)F2(1,0)PF1=(-1-√5sinθ,-2cosθ)PF2=(1-√5sinθ,-2cosθ)PF1*PF2=5sinθ^2-1+4cos