设方阵A B满足A=1 2(B E)证明A*A=A

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 03:41:23
设方阵A B满足A=1 2(B E)证明A*A=A
设B为可逆矩阵,A是与B同阶方阵,且满足A2+AB+B2=0,证明A和A+B都是可逆矩阵.

∵A2+AB+B2=0,∴A(A+B)=-B2,而B可逆,故:|-B2|=(-1)n|B|2≠0,∴|A(A+B)|=|-B2|≠0,∴A,A+B都可逆,证毕.

设方阵A满足A*A=A 证明A+3E可逆,并求(A+3E)逆矩阵

A*A=A,A*A-A=0,A*A-A-12E=-12E(A+3E)(A-4E)=-12E,由于|(A+3E)*(A-4E)|=|A+3E|*|A-4E|=(-12)^n≠0(设A是n阶方阵),所以A

设n阶方阵A满足A*A-A-2E=0,证明A和E-A可逆

证明:因为A*A-A-2E=0,所以A(A-E)=2E或A(E-A)=-2E..所以A和E-A可逆,且A^-1=(1/2)(A-E),(E-A)^-1=(-1/2)A.满意请采纳^_^

证明逆矩阵存在已知 设n阶方阵A,B满足 AB=A+B 证明 A-E 可逆AB- A- B=0B(A-E)=AB=A(A

这不是原题吧由AB-A-B=0得(A-E)B=A[注意左右的差别]则B=(A-E)^-1A但从你题目中推不出A-E可逆若要继续讨论,请给原题再问:已知设n阶方阵A,B满足AB=A+B证明A-E可逆这就

方阵AB=BA方阵A和方阵B需要满足什么条件?

没有一般的充要条件.只是充分条件的话,貌似有一个是正交阵就可以?

已知矩阵A,B满足AB=BA,证明:A,B是同级方阵

设A,B分别是m*n和n*m矩阵,则AB是m级方阵,BA是n级方阵.所以m=n.

设A,B是n阶方阵,满足AB=A-B,证明AB=BA

AB=A-BAB-A+B-I=-I(A-I)(B+I)=-I(B+I)(A-I)=-IBA-A+B-I=-IBA=A-B所以AB=BA

设n阶方阵 A B 满足AB=BA ,(A+B)^3=0,且B可逆,证明A 可逆.

由于AB=BA所以(A+B)^3=0可以展开成A(A^2+3AB+3B^2)=-B^3两边取行列式得|A||A^2+3AB+3B^2|=(-a)^n|B|^3由B可逆知右边不是0.所以|A|一定不能为

设n阶方阵A和B满足条件A+B=AB,证明A-E为可逆矩阵

证∵(A-E)(B-E)=E又:det(A-E)*det(B-E)=detE=1∴det(A-E)≠0∴A-E是可逆阵

方阵A,B满足A+B=AB 证明A,B可交换,即AB=BA

A+B=AB,所以(A-E)(B-E)=E,E是单位矩阵所以,A-E与B-E互为逆矩阵,所以,E=(B-E)(A-E)=BA-A-B+E,得BA=A+B所以,AB=BA

大学线性代数 设A,B均为n阶方阵.1.A,B满足A+B+AB=0.证明E+A,E+B互为逆阵,

1、A+B+AB=0,A+B+AB+E=E,(E+A)(E+B)=E,所以E+A与E+B可逆且互为逆矩阵.所以(E+B)(E+A)=E,E+A+B+BA=E,A+B+BA=0.将A+B+AB=0与A+

设方阵A满足A^-3A+I=0 试证A可逆

A(A-3I)=-I不等于0|A||A-3I|=-1|A|不等于0A可逆

设A,B为n阶方阵,满足关系AB=0,则必有_____

AB=0左右取行列式得|A||B|=0所以|A|=0或|B|=0

设A,B是两个N阶方阵,满足条件AB=E,|A|=-5,则|B|=

由题得︱A︱︱B︱=︱E︱=1,∵︱A︱=-5,∴︱B︱=-1/5

设4阶方阵满足|3E+A|=0 ,AAT=2E,|A|

由A是4阶方阵,且AAT=2E,得|A|^2=|AAT|=|2E|=2^4=16.又由|A|

设n阶方阵A与B满足A+B=AB,证明A-E可逆.请给出详细一点的过程.

AB-A-B=OAB-A-B+E=E(A-E)(B-E)=E所以A-E可逆,逆为B-E再问:为什么(A-E)(B-E)=E?这个步骤能说清楚点吗?再答:AB-A-B+E=A(B-E)-(B-E)=(A

方阵性质证明问题设AB为n阶方阵,证明|AB|=|A||B|

我只说简单的步骤,你可以自己试着推一下.(1)n阶方阵可以化成上三角阵和一些初等矩阵的乘积.(2)证明初等矩阵的乘积的行列式等于他们各自行列式的乘积.(3)证明上三角阵和上三角阵的乘积的行列式等于他们