设函数ex ysin(x z)=1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 18:59:22
y+y∂z/∂x+z+x∂z/∂x=0∂z/∂x=-(y+z)/(x+y)∂2z/∂x2=【∂
两边同时微分zdx+xdz+zdy+ydz+xdy+ydx=0(x+y)dz+(y+z)dx+(z+x)dy=0dz=-[(y+z)dx+(z+x)dy]/(x+y)
我的答案在图片里,你单击一下图片可以看得更清楚.
Z'x=-yf'(y/x)y/x^2xZ'=-y^2f'(y/x)/xZ'y=xf'(y/x)1/xyZ'y=yf'(y/x)xZ'x+yZ'y=-y^2f'(y/x)/x+yf'(y/x)=y(x-
z=z(x,y)(1)2xz+ln(xyz)=0(2)e^z-xyz=a^3求:∂z/∂x=?记:z'=∂z/∂x1)2z+2x(∂z/
y+y∂z/∂x+z+x∂z/∂x=0∂z/∂x=-(y+z)/(x+y)y∂2z/∂x2+2ͦ
f对第1个变量的偏导函数记作f1,第2个变量的偏导函数记作f2,dz=f1*d(xz)+f2*d(z/y)...[注:写完整的话是f1(xz,z/y),f2也如此]=f1*(xdz+zdx)+f2*(
df=f1*d(xz)+f2*d(y+z)=f1*(z*dx+x*dz)+f2*(dy+dz)=0dz=-(z*f1*dx+f2*dy)/(x*f1+f2)其中f1和f2分别为f这个二元函数对第一个和
左式可化为[(xy)^3+(xz)^3+(yz)^3]/xyz+6xyz;然后[(xy)^3+(xz)^3+(yz)^3]/xyz>=3xyz(这一步是将分子利用(a+b+c)>=3*(abc)^(1
x+2y-z=3e^(xy-xz)两边对x求导,z看成是x的函数求偏导得,y看成常数,得1-əz/əx=3(y-z-xəz/əx)e^(xy-xz)=><
x^2+y^2+z^2+2w=(x+y+z)^2=4所以w=2-(x^2+y^2+z^2)/2问题转化为求x^2+y^2+z^2的取值问题.不妨设0
这是隐函数.二阶导再导一次就是.方程两边对x求导,得z'=cos(xz)(xz)'+y(y不是关于x的函数吧?)=zcos(xz)+xz'cos(xz)+y所以z'=[zcos(xz)+y]/[1-x
设a=x-1,b=y-1,c=z-1,于是a+b+c=0xyz-xy-xz-yz=(a+1)(b+1)(c+1)-(a+1)(b+1)-(b+1)(c+1)-(c+1)(a+1)=abc-2利用a^3
两边对x求导先求出Z‘,然后再两边对x求导,这次得到z’和x,y,z表示的z“
因为所证式子及已知中x,y,z可以轮换,即性质等价,所以不妨设x>=y>=z>=0;由x+y+z=1得z=yz+xz+(1/3)xy>=0x=1,y=z=0时可取等,左边得证.又xy+yz+xz-2x