设函数ex ysin(x z)=1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 18:59:22
设函数ex ysin(x z)=1
设由方程xy+yz+xz=1,确定函数z=f(x,y),求∂2z/∂(x^2)

y+y∂z/∂x+z+x∂z/∂x=0∂z/∂x=-(y+z)/(x+y)∂2z/∂x2=【∂

设方程xz+yz+xy=e的定函数z=z(x,y),求dz

两边同时微分zdx+xdz+zdy+ydz+xdy+ydx=0(x+y)dz+(y+z)dx+(z+x)dy=0dz=-[(y+z)dx+(z+x)dy]/(x+y)

设函数z=z(x,y)由方程xz^2+yz=1所确定,则dz/dx=?

我的答案在图片里,你单击一下图片可以看得更清楚.

设 z=xyf(y/x),f(u)可导,则xZ'x+yZ'y=?

Z'x=-yf'(y/x)y/x^2xZ'=-y^2f'(y/x)/xZ'y=xf'(y/x)1/xyZ'y=yf'(y/x)xZ'x+yZ'y=-y^2f'(y/x)/x+yf'(y/x)=y(x-

设函数z=z(x,y)由方程2xz+ln(xyz)=0确定,求dz/dx(详细步骤)

z=z(x,y)(1)2xz+ln(xyz)=0(2)e^z-xyz=a^3求:∂z/∂x=?记:z'=∂z/∂x1)2z+2x(∂z/&#

设由方程xy+yz+xz=1,确定函数z=f(x,y),求∂^2z/∂x^2

y+y∂z/∂x+z+x∂z/∂x=0∂z/∂x=-(y+z)/(x+y)y∂2z/∂x2+2ͦ

设Z=f(xz,z/y)确定Z为x,y的函数求dz

f对第1个变量的偏导函数记作f1,第2个变量的偏导函数记作f2,dz=f1*d(xz)+f2*d(z/y)...[注:写完整的话是f1(xz,z/y),f2也如此]=f1*(xdz+zdx)+f2*(

设z=z(x,y)是由方程f(xz,y+z)=0所确定的隐函数,求dz.

df=f1*d(xz)+f2*d(y+z)=f1*(z*dx+x*dz)+f2*(dy+dz)=0dz=-(z*f1*dx+f2*dy)/(x*f1+f2)其中f1和f2分别为f这个二元函数对第一个和

设x,y,z∈R+,xy+yz+xz=1,证明不等式:(xy)^2/z+(xz)^2/y+(yz)^2/x+6xyz≥x

左式可化为[(xy)^3+(xz)^3+(yz)^3]/xyz+6xyz;然后[(xy)^3+(xz)^3+(yz)^3]/xyz>=3xyz(这一步是将分子利用(a+b+c)>=3*(abc)^(1

设函数z=z(x,y)由方程x+2y-z=3e^(xy-xz)确定,则dz(0,0)=?

x+2y-z=3e^(xy-xz)两边对x求导,z看成是x的函数求偏导得,y看成常数,得1-əz/əx=3(y-z-xəz/əx)e^(xy-xz)=><

比1小的三个正数x,y,z的和是2,设w=xy+yz+xz,则w的取值范围是:

x^2+y^2+z^2+2w=(x+y+z)^2=4所以w=2-(x^2+y^2+z^2)/2问题转化为求x^2+y^2+z^2的取值问题.不妨设0

设z是由方程z=sin(xz)+xy确定的函数,求z对x的二阶导数,x=0,y=1.

这是隐函数.二阶导再导一次就是.方程两边对x求导,得z'=cos(xz)(xz)'+y(y不是关于x的函数吧?)=zcos(xz)+xz'cos(xz)+y所以z'=[zcos(xz)+y]/[1-x

设x+y+z=3.求代数式[3[xyz-xy-xz-yz]+6]/[[x-1]^3+[y-1]^3+[z-1]^3]的值

设a=x-1,b=y-1,c=z-1,于是a+b+c=0xyz-xy-xz-yz=(a+1)(b+1)(c+1)-(a+1)(b+1)-(b+1)(c+1)-(c+1)(a+1)=abc-2利用a^3

隐函数的求导设Z由方程Z=sin(xz)+xy确定的函数,求对X的两次偏导当X=0 Y=1

两边对x求导先求出Z‘,然后再两边对x求导,这次得到z’和x,y,z表示的z“

设x,y,z≥0,且x+y+z=1,求证:0≤xy+yz+xz-2xyz≤7/27

因为所证式子及已知中x,y,z可以轮换,即性质等价,所以不妨设x>=y>=z>=0;由x+y+z=1得z=yz+xz+(1/3)xy>=0x=1,y=z=0时可取等,左边得证.又xy+yz+xz-2x