设二次型f(X1,X2,X3)=X的转置*AX的秩为1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 13:40:23
实际上就是求矩阵A的特征值因为A中各行元素之和为3所以A*(1,1,1)T=3(1,1,1)T所以(1,1,1)T是属于特征值3的一个特征向量只能做到这里了还有什么条件吧再问:这就是全部的题目,让求的
f(x1,x2,x3)=(x1-x2)^2+(x2-x3)^2=x1^2-2x1x2+2x2^2-2x2x3+x3^2A=1-10-12-10-11
你的变换矩阵为11001-1101行列式等于0所以这不是可逆变换配方法应该是首先把含x1的项一次处理光x1只能出现在第1项中再问:因为是不可逆变换,所以X不等于QY,所以我那样的做法不对,是这个意思吗
这题还有点意思.二次型的矩阵A=1a1a-5b1b1由(2,1,2)^T是A的特征向量得A(2,1,2)^T=λ1(2,1,2)^T即有a+4=2λ12a+2b-5=λ1b+4=2λ1解得:a=b=2
A=011101110A+E=111111111-->111000000对应方程x1+x2+x3=0(1,-1,0)^T显然是一个解与它正交的解有形式(1,1,x)^T代入方程x1+x2+x3=0确定
与A的秩有关!因为r(A)=1所以Ax=0的基础解系含3-1=2个向量即A的属于特征值0的线性无关的特征向量有2个所以A的特征值是3,0,0
(1)二次型的矩阵A=1t1t20101由A奇异知|A|=0.而|A|=-t^2所以t=0(2)此时A=101020101|A-λE|=-λ(λ-2)^2.所以A的特征值为λ1=0,λ2=λ3=2.对
解:二次型的矩阵A=1-24-242421|A-λE|=1-λ-24-24-λ2421-λ=-(λ+4)(λ-5)^2A的特征值为λ1=-4,λ2=λ3=5.对λ1=-4,(A+4E)X=0的基础解系
由已知,f的矩阵A=20000101a与B=2000b000-1相似所以2+a=2+b-1且|A|=-2=|B|=-2b所以b=1,a=0.且A=200001010的特征值为2,1,-1(A-2E)x
根据就是正定二次型的定义根据正定二次型的定义,对于任意不全为0的x1,x2……xn,有F(X1,X2,……xn)>0而题目中,很明显存在一个非0的x=[1,-1,0,0,0,...0],使F(x1,x
因为A^2-2A=3E所以A的特征值a满足(a-3)(a+1)=0所以A的特征值只能是3或-1.又由于f的正惯性指数p=1所以A的特征值为3,-1,-1,-1所以规范型为(A).PS.事实上,由正惯性
正惯性指数为(1),负惯性指数为(1)详解:f(x1,x2,x3)=(x1,x2,x3)(a1,a2,a3)^T(b1,b2,b3)(x1,x2,x3)^T所以二次型的矩阵A=(a1,a2,a3)^T
其规范形为y1^2+y2^2+y3^2-y4^2注:二次型的秩=正惯性指数+负惯性指数再问:秩为4,就是取前4个来平方吗?再答:是.系数取正负1,正项的个数为正惯性指数
令x1=y1+y2,x2=y1-y2,x3=y3则f=2(y1+y2)(y1-y2)+2(y1+y2)y3-6(y1-y2)y3=2y1^2-4y3y1-2y2^2+8y3y2=2(y1-y3)^2-
X1+X2>0x1>-X2因为f(x)在R上单调递减,所以f(x1)>f(-x2)因为f(x)在R上是奇函数,则有f(-x2)=-f(x2)所以,f(x1)>-f(x2)即f(x1)+f(x2)>0同
210120002|A-λE|=2-λ1012-λ0002-λ=(2-λ)[(2-λ)^2-1]=(2-λ)(3-λ)(1-λ)所以A的特征值为1,2,3.
步骤1)写出二次型所对应的矩阵A2)算出A的特征值,λ1=λ2=1,λ3=103)算出对应得特征向量(1,1,0)T;(1,0,2)T(-2,2,1)T4)P=[(1,1,0)T;(1,0,2)T;(
二次型的矩阵A=200032023对特征值2,A-2E=000012021化为000010001基础解系为(1,0,0)'.再问:请问化为000010001后是因为右下角是二阶单位阵,所以在左上角添一
秩为1,A有一个二重特征值λ1=λ2=0A中行元素之和为3,A的另一个特征值λ3=3标准型为:diag(0,0,3)再问:为什么行元素之和为3,A的另一个特征值就是3?行元素之和的意思是不是A每一行的