设上三角矩阵A的主对角线上元素互异,证明A能与对角矩阵相似
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 14:18:47
最后一段代码差了一对 {}代码修改后如下如下:#include<stdio.h>int main(){ int i,j,a[4][4],m=1,n=
若A是三角型矩阵,若主对角线上元素(全不为0),则A可逆
显然等于n是不可能的了.然后证明比如前n-1列是线性无关的.第n列就写作A_n假设存在一组不全为0的系数b_1b_2...b_{n-1}使得b_1A_1+b_2A_2+...+b_{n-1}A_{n-
可以,此时矩阵就是零矩阵,也就是所有的元素都为0的一个矩阵.再问:那此时的零矩阵还算不算是对角矩阵吖?再答:当然是矩阵了,元素都是零,又不意味着矩阵不存在了。0跟其他数一样,这里没有什么特殊性。
设上三角形的正交矩阵A=[a1,a2,...,an]a1=(a11,0,...,0)^T,a2=(a12,a22,0,...,0)^T,...,an=(a1n,a2n,...,ann)(akk≠0,k
把n阶矩阵A看成是n个列向量,然后用施密特正交法正交化后,就能得出来
特征值都不相同,当然可以对角化再问:可是题上问我要过程。。。再答:上三角矩阵的主对角线上的元素就是全部特征值。再问:是啊我明你的意思可我总不能就写一句话在上面吧丶再答:你想写几句就写几句,不知道你们的
是!因为IxE-AI=(x-1)(x-2)(x-3).令IxE-AI=0,解得所有特征值是1,2,3.第一个例子也同理.所以对角矩阵的特征值就是主对角线上的各个元素.再问:谢谢老师,那矩阵相似,他们的
由A正定,则对任一x≠0,x^TAx>0.取x=εi,第i个分量为1,其余分量都是0.则εi^TAεi=aii>0,i=1,2,...,n所以A的对角线上的元素都大于零.再问:没看的很懂,你是把A化为
证:用伴随矩阵的方法由A可逆,A^-1=A*/|A|记A=(aij),A*=(Aij)^T其中Aij=(-1)^Mij是aij的代数余子式,Mij是aij是余子式.当ii.2.某行乘非零常数在这两类变
是的.不可逆的矩阵是特征值中最少有一个0,这个矩阵有5个特征值.其中有一个为0,没有问题.
证明:反证法.假设绝对值最大的不在主对角线上,而是在第i行,第j列,不妨设i
正定,等价于所有主子式>0而主对角元就是所有的一阶主子式,故大于0
特征多项式f(a)=|aE-A|,f(a)=0的根即为特征值对于上(下)三角阵右边的行列式恰好是f(a)=(a-a11)(a-a22)...(a-ann)所以特征值自然就是对角线元素
根据“上三角矩阵A的主对角线上元素互异,”可以推得“上三角矩阵A有n个互不相等的特征值(为主对角线上元素)”所以可得A能与对角矩阵相似
上三角阵主对角线元素即为特征值,由题意可知A的特征值为a,且为n重.即他的代数重数为n.现要求A可对角化,必须几何重数等于代数重数:即其次线性方程组(aE-A)X=0的解空间维数等于n,这就要求ran
定义证明,定义证明再问:不会,其实书上的例题证明我就没看明白再答:就是罗列每个矩阵的每个元素,然后按照矩阵乘法做运算,看下结果是否相符。
你虽然输入了值,但是没有将输入的值赋给数组,我给一个语句如下:for(i=0;i<=3;i++) for(j=0;j<=3;j++)