设z=uv sint,而u=e,v=cost,求全导数dz dt.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 22:34:38
dz=d[xyP(z)]=yP(z)dx+xP(z)dy+xyP'(z)dz所以dz=[yP(z)dx+xP(z)dy]/[1-xyP'(z)]du=df(x,z)=f'x(x,z)dx+f'z(x,
由z=u²v²,其中u=x-y,v=x+y,题型:求复合函数的偏导数:z=(x-y)²(x+y)²,dz/dx=(x-y)²×2(x+y)+2(x-y
X的概率密度函数为p(x)=1x∈(0,1)0其他Y的概率密度函数为f(x)=e^(-x)x≥00其他利用和的分布公式可知,Z的概率密度函数为g(y)=∫Rp(x)f(y-x)dx=0y≤0∫[0,y
EW=2EX+3EXEYEZ-EZ+5=4+3*2*0.5*1.5-1.5+5=12再问:请问Ez为什么是1.5不是1···
首先, dz=sinydx+xcosydy,则 du=[e^(x²+y²+z²)](2xdx+2ydy+2zdz) =2[e^(x²+y²+z
解:假设z=a+bi则u=(a^2-b^2-2)+2abi因为|z|=1,则a^2+b^2=1(数形结合分析可以知道-1
设F关于u和v的偏导函数分别记为f'1,f'2,下记f'1(x+z/y)=a,f'2(y+z/x)=b(a和b都是关于x,y,z的表达式)则由F(x+z/y,y+z/x)=0由复合函数偏导法则αF/α
∂z/∂x=(∂f(u,v)/∂u)*(∂u/∂x)+(∂f(u,v)/∂v)*(∂v/
解答1题:可以推出,满足等式δ²Z/δx²+δ²Z/δy²=Ze^2x就是满足f″=f解微分方程y″=y的通解为y=C1e^u+C2e^(-u)所以f(u)=C
由柯西不等式(a^2+b^2+c^2)(x^2+y^2+z^2)>=(ax+by+cz)^2,得((1/√2)^2+(1/√3)^2+1)(2x^2+3y^2+z^2)>=(x+y+z)^22x^2+
两端对x求偏导得:-ye^(-xy)-2(z/x)+(z/x)e^z=0,所以,z/x=ye^(-xy)/(e^z-2)两端对y求偏导得:-xe^(-xy)-2(z/y)+(z/y)e^z=0,所以,
z=x+yg(z)=>dz/dx=1+yg'(z)dz/dx=>dz/dx=1/(1-yg'(z))dz/dy=g(z)+yg'(z)dz/dy=>dz/dy=g(z)/(1-yg'(z))du/dy
(z对x的偏导)=y+F(u)+x[F'(u)(-y/x^2)](z对y的偏导)=x+F'(u)/x代入,左边=[xy+xF(u)-yF'(u)]+[xy+yF'(u)]=xy+xF(u)+xy=z+
dy/dx=dy/du*du/dx+dy/dv*dv/dx=v*e^(x+y)+u*y/x=ln(xy)*e^(x+y)+e^(x+y)*y/x=e^(x+y)[ln(xy)+y/x]所以dy=e^(
dz/dx是z对x的偏导,这样把u,v都带入的话直接球偏导就好了dz/dx=y*e^(xy)*sin(x+y)+e^(xy)*cos(x+y)同理也可得到dz/dy=x*e^(xy)*sin(x+y)
本题的解答,需要说明一下:1、因为函数f是x+y的函数,也就是复合关系: f是u 的函数,而u=x+y;2、无论是对x求导,还是对y求导,都得先对u&nbs
令u=e^x*siny,则z=f(u)∂z/∂x=∂z/∂u*∂u/∂x=f'(u)*e^x*siny=uf'(u),ͦ