设z=sin(xy^2),则z
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:35:22
算数平方根有意义,xy同号.x²+4y²+z²-3xy=2z√(xy)x²+4y²+z²-2z√(xy)-3xy=0x²-4xy+
第一个无过程,就是考察t分布的定义,这里结果是t(5);第二个也可以说是无过程,考察的是二项分布的数字特征及矩估计方法(替换原理)这两个常识.对于X服从B(n,p)来说,其期望为EX=np,方差为DX
dz=2x+y就是对z求x的导数吧
e^y-e^x=xy两边求导,得e^y*y'-e^x=y+xy'(e^y-x)y'=(e^x+y)所以y'=(e^x+y)/(e^y-x)x=0时,e^y-e^0=0,则e^y=1,则y=0所以y'(
再答:隐函数高阶求导。再答:
(y^2+2xy-cos(y+z))/(e^z+cos(y+z))再问:没有过程吗?再答:求导:e^z*dz-y^2-2xy+cos(y+z)(1+dz)=0把含有dz的项移到一起:(e^z+cos(
∂Z/∂x=y*cos(xy)-2cos(xy)*sin(xy)*y=y*cos(xy)-y*sin(2xy)∂Z/∂y=x*cos(xy)-2cos(
设z=a+bi,则Z=a-bi,z+Z=4,2a=4,a=2,z*Z=8,即(2+bi)(2-bi)=8,4+b^2=8,b=2或-2.代入可知,结果为正负i.选D
两端对x求偏导得:-ye^(-xy)-2(z/x)+(z/x)e^z=0,所以,z/x=ye^(-xy)/(e^z-2)两端对y求偏导得:-xe^(-xy)-2(z/y)+(z/y)e^z=0,所以,
z=x²+4y²-3xy≥4xy-3xy=xy所以xy/z≤1.xy/z取得最大值时xy=z且x=2y,所以z=2y².2/x+1/y-2/z=1/y+1/y-1/y
dz=2xdy+2ydx
sinz=[e^(iz)-e^(-iz)]/(2i)=2e^(iz)-e^(-iz)=4i令z=x+iy,代入:e^x(cosy+isiny)-e^(-x)(cosy-isiny)=4i对比实部及虚部
x+2y-z=3e^(xy-xz)两边对x求导,z看成是x的函数求偏导得,y看成常数,得1-əz/əx=3(y-z-xəz/əx)e^(xy-xz)=><
题目有点问题,z/(xy)没有最大值.由条件z=x²+4y²-3xy,故z/(xy)=x/y+4y/x-3.取x=1,当y趋于0时,可知右端趋于正无穷.正确的说法可能是z/(xy)
dz=Z'xdx+Z'ydy=2xcos(x^2+y^2)dx+2ycos(x^2+y^2)dy
再问:啊不好意思搞错了。。是z=e^(x^2+y^2),求dz,谢谢你帮我解答一下吧。。再答:
可以用概率和为1的性质及期望值来求出x与y.经济数学团队帮你解答,请及时评价.谢谢!
这是隐函数.二阶导再导一次就是.方程两边对x求导,得z'=cos(xz)(xz)'+y(y不是关于x的函数吧?)=zcos(xz)+xz'cos(xz)+y所以z'=[zcos(xz)+y]/[1-x
z=x^2+2xy两边同时求导数,得到:dz=2xdx+2ydx+2xdy即:dz=2(x+y)dx+2xdy.