设x为正数,求函数y=x²-x 1 x最小值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 15:38:32
再问:怎么移项的到结果
(1)1/x+2/y=(1/x+2/y)*1=(1/x+2/y)*(x+y)=1+2x/y+2+y/x≥3+2√(2x/y*y/x)≥3+2√2当且仅当2x/y=y/x时等号成立即x=√2-1.y=2
9=1+4x/y+y/x+4=5+4x/y+y/x≥5+2√4x/y*y/x=5+4=9当4x/y=y/x,因为x、y为正数,故y=2x
(x^2+7x+10)/(x+1)=5+(x+1)+[4/(x+1)]≥5+2√[(x+1)*4/(x+1)]=9最小值9(x+1/2y)^2+(y+1/2x)^2=x^2+(1/4x^2)+(x/y
2*x+8*y-x*y=02x+y8=xy>=2√2x*√8y=4√xy√xy>=4xy>=16x>=16/yx+y>=16/y+y>=2√16/y*√y=8所以最小值是8
令u=x+arctanx,则u'=1+1/(1+x^2)则y=f^2(u)dy/dx=2f(u)f'(u)u'=2f(u)f'(u)[1+1/(x+x^2)]
分两种情况讨论就好1、x-a≥0即x≥a时y=2x^2+(x-a)^2=3x^2-2ax+a^2=x^2-2/3ax+1/3a^2=(x-1/3a)^2+2/9a^2自己画一下图,因为x≥a1/3a≤
你看看我的过程吧,(x+y)*(1/x+4/y)=1+y/x+4x/y+4=5+(y/x+4x/y),由于xy均为正数,则可对y/x+4x/y使用均值定理,得(x+y)*(1/x+4/y)>=9,所以
对Y求导,得Y'=2*X-1-1/X^2当X=1或者X=-1时,Y'=0当0
(1)当y>0时,-3/5x+1>0x0时,y=-3/5x+1x=5/3(1-y)>0y
y=x(26-x)y=26x-x²
两边对x求导得:2yy'*f(x)+y^2f'(x)+f(x)+xf'(x)=2x得:y'=[2x-xf'(x)-y^2f'(x)]/(2yf(x)]dy=[2x-xf'(x)-y^2f'(x)]/(
y'e^x+ye^x-ye^x=1y'e^x=1y'=e^(-x)y=-e^(-x)+c又x=0时y(0)-0=0+1y(0)=1所以1=-1+cc=2即解y(x)=-e^(-x)+2
x^2-2xy-y^2=0x^2-2xy+y^2=2y^2(x-y)^2=2y^2|x-y|=根号2Y二边同除以Y得到:|X/Y-1|=根号2即X/Y=1(+/-)根号2(X-Y)/(X+Y)=(X/
柯西不等式:(a^2+b^2)(c^2+d^2)≥(ac+bd)^2【(√2x)²+(√3y)²】*【√(8/x)²+√(3/y)²】≥【√2x*√(8/x)+
因为x+2y=1所有乘以1当然就相等啊1/x+1/y=(x+2y)(1/x+1/y)x+2y=1所以1/x+1/y=(1/x+1/y)(x+2y)=1+2y/x+x/y+2=3+(2y/x+x/y)x
dyf'(arcsin(1/x))—=-———————dxx√(x^2-1)
由y=f(x)的反函数为y=g(x)可知若y=f(x)则x=g(y)则若y=f(-x)则有-x=g(y)x=-g(y)所以f(-x)的反函数为-g(x)