设T是N维线性空间V上的线性变换,且T2=T,证明1)T的特征向量只能是0和1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 15:05:13
那先随便取定一组基B1,T在这组记下的矩阵设成A.再取另一组基B2两组基间的过渡矩阵P:从B1到B2间的过渡矩阵.(此时B2可以由P唯一决定)T在B2下的矩阵设成C.易知C=P逆*A*P那么这个问题的
知识点:线性变换在不同基下的矩阵相似设T在某基下的矩阵为A.则由已知对任一可逆矩阵P,P^-1AP=A.所以AP=PA所以A为一个数量矩阵kE故线性变换T为数量变换再问:AP=PA则A=kE,有什么依
题目是不是这样V={(a,b,a,b,...,a,b)|a,b属于P};V是由所有(a,b,a,b,...,a,b)这样的向量构成的.再问:是的。再答:首先你要理解V的含义,即V中元素是这样的向量α=
先取V的一组基{e},这样就可以用具体的坐标来描述所有的东西假定m=dim(W1),k=dim(W2)=n-m,只需讨论m和k都非零的情况,余下的是平凡的取W1的一组基,这组基在{e}下的坐标表示是一
是根据则a在基β下的矩阵为T^-1AT的定义来的,看下矩阵的基变换定义就知道了再问:要推的就是这结论,用结论证结论?
零变化属于U所以U分非空任意σ1σ2属于U那么对于任意x属于V有σ1(x)=k1xσ2(x)=k2x所以(σ1+σ2)(x)=(k1+k2)x所以(σ1+σ2)属于U任意σ1属于Um属于F对于任意x属
(1)两个子空间的和是直和只需要证明它们的交只有零向量.设Y∈ker(A)∩im(A),则AY=0且存在X使Y=AX.∵A²=A,∴Y=AX=A²X=A(AX)=AY=0.即ker
基本上忘光了,只能给你建议个思考方向.多项式矩阵和Jordan标准型
线性空间是定义两种封闭运算的满足八条基本性质的非空集合,W为数域F上的n维线性空间V的子集合,所以W满足八条基本性质.所以只有W的运算封闭,就是线性空间.0+0=0,k0=0再问:谢谢你,你能帮我回答
只需说明V对矩阵的加法及数乘运算封闭:两个上三角矩阵的和仍是上三角一个数乘上三角矩阵仍是上三角矩阵所以V是线性空间.其维数为n+(n-1)+...+1=(n+1)n/2再问:维数是怎么计算的呢为什么这
一个基是diag(1,0,...,0),diag(0,1,0,...0),.,diag(0,0,0,...,1)维数为n
不太会证,用矩阵的语言说明思路吧.矩阵T的等价标准型为D=【E0;00】,其中E是单位阵,阶数是T的秩,也就是变换T的像空间的维数.故存在可逆矩阵P,Q使得PTQ=D,令S=QP,则TST=P^(-1
第一问:设ξ是线性变换T的任一个特征向量,对应的特征值是λ,则有Tξ=λξ,两边左边用T作用,得T^2(ξ)=T(Tξ)=λTξ=λ^2ξ,而由已知,T^2=I,故λ^2ξ=ξ,因为ξ≠0==>λ^2
你好!很高兴为你解答,~如果你认可我的回答,请及时点击【采纳为满意回答】按钮~~手机提问者在客户端右上角评价点“满意”即可.~~你的采纳是我前进的动力~~祝你学习进步!有不明白的可以追问!谢谢!~
设V是数域P上的n维线性空间,W是V的一个s维子空间,那么,取定W的一个基:E1,E2,...,Es,将W的这个基扩充为V的一个基,记为,E1,E2,...,Es,Es+1,...,En现在我们构造一
V必存在一组正交基r=1V的基的线性组合有无穷多个,可组成无穷多彼此间线性无关的子空间的基,这是因为,n元齐线性方程组有无穷多个,且必有解.1
双射与单位变换是两回事双射是一一对应单位变换是恒等变换
(证明存在向量a属于V但a不属于V1、V2中任意一个)证明:因为V1、V2互不包含且它们均V的真子空间从而必存在a1属于V1且a1不属于V2、a2属于V2且a2不属于V1现证明a1+a2不属于V1且a