设P是△ABC内一点.求:P到△ABC三顶点的距离和与三角形周长之比的取值范
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 16:05:27
第一题:并不困难的一道题,最容易的一个解法是建系解析,利用直线的斜率(正切)和向量求解即可.第二题:多说一些吧:第一步:不妨设a>b>c,a=b+m=c+m+n,m,n>0;第二步:a^2+b^2+c
将△BPC绕点B逆时针方向旋转至△BEA,连EP,所以EP=2根号2,又EA=3,AP=1,AD^2+EP^2=AE^2,故△AEP是直角三角形,故∠APE=90,所以∠APB=90+45=135,由
因为PA〈AB即PA〈BC又PB+PC〉BC(三角形两边之和大于第三边)所以PA〈BC〈PB+PC即PA〈PB+PC
f(Q)=f(1/2,1/3,1/6),则λ1=1/2,λ2=1/3,λ3=1/6;因为λ1+λ2+λ3=1/2+1/3+1/6=1,则Q点仍在△ABC内;由于1>λ1>1/3,则Q点离开BC边的距离
连结PP‘∵将△PAB绕点A逆时针旋转到△P’AC∴PA=P‘A又∵△ABC是正三角形∴∠P’AP=∠CAB=60°∴△PAP’是正三角形∴PP‘=PA又∵PA=3∴PP’=3答:P和P‘之间的距离为
△ABC的面积=8*15/2=60cm^2AC^2=AB^2+BC^2=8^2+15^2=289=17^2,AC=17连接PA,PB,PC.这样把△ABC分成△PAB,PBC,PCA三个小三角形.设P
作两条边的垂直平分线,两线交于一点,过此点作三角型所在的平面的垂线,所得线上平面外的点均是所求点.
建立坐标系.C为坐标原点.动点P坐标为(a.b)那么到AC距离=a.到BC距离=b.求出AB直线方程..然后利用点到直线的距离公式.所以X+Y+Z.就=a+b+p到AB的距离!这是思路嘴鸥应该只剩下a
分析:过P作PQ⊥面ABC于Q,则Q为P在面ABC的投影,因为P到A,B,C的距离相等,所以有QA=QB=QC,即Q为三角形ABC的外心,Q到三角形ABC各边的距离相等,即Q为三角形ABC的外心,所以
将ΔPAC绕点A逆时针旋转60°后怎么回得到ΔP′AB?应该是得到ΔP′AC′吧?旋转60°后△APP′是等边三角形,故P到P′的距离=AP=6.
将三角形APB绕点B顺时针旋转60°到三角形BP'C因为BP'=BP,PBP'=60°所以是等边三角形BPP'所以PP'=4CP'=AP=3PC=5PC^2=PP'^2+CP'^2PP'C=90°BP
储备知识:正弦定理:2R=a/sinA,即sinA=a/2R(R为外接圆半径)S△=½bcsinA=½bc•a/2R∴2S=abc/2R均值不等式:ab+bc+
楼上不详细,设边长为X,面积S=1/2×X(PD+PE+PF)=X×二分之根号三X×1/2得出PD+PE+PF=高所以.
以AB为y轴,BC为x轴,B为原点建立坐标系ABCD四点坐标为(0,1),(0,0),(1,0),(1,1)设P坐标为(x,y)则x^2+y^2=b^2x^2+(1-y)^2=a^2(1-x)^2+y
设p为三角形ABC内一点,D,E,F分别为P到BC,CA,AB所引垂线的垂足,求使BC比PD+CA比PE+AB比PF为最小的P点重心
延长BP交AC于D,则PB+PC
证明:延长BP交AC于DAB+AD>BD所以AB+AD+CD>BD+CDBD=PB+PD,AD+CD=AC因此AB+AC>PB+DP+CD又,PD+CD>PC所以AB+AC>PB+PC
等于正三角形边长3倍再问:不对吧,正三角的面积是(根号3)/4乘以边长的平方吧再答:我说的是它的面积刚好等于这个正三角形边长的 3 倍。当然得先求出边长,经计算等于 4&
BC小于PB+PC(1)延长BP交AC于D,易证PB+PC小于AB+AC(2)由(1)(2)BC小于PB+PC小于AB+AC(3)同理AC小于PA+PC小于AC+BC(4)AB小于PA+PB小于AC+
连ACS△ABC=(1/2)sinB*AB*BC=(1/2)*[(√3)/2]*2*(√5)=(√15)/2AC^2=AB^2+BC^2-2cosB*AB*AC=4+5-2*(1/2)*2*(√5)=