设n阶矩阵A与B满足A B=AB,证明:AB=BA且A=B(B-E)-1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 16:58:57
∵A2+AB+B2=0,∴A(A+B)=-B2,而B可逆,故:|-B2|=(-1)n|B|2≠0,∴|A(A+B)|=|-B2|≠0,∴A,A+B都可逆,证毕.
设n阶矩阵A,B满足AB=aA+bB.其中ab不等于0,证明AB=BA.证:以下记单位矩阵(幺阵)为E.由已知得(A-bE)(B-aE)=abE0两边求行列式,均不为零,故det(A-bE)0,故A-
证:因为正交矩阵的行列式是正负1再由|AB|
A^2=A,B^2=B,(A+B)^2=(A+B)==>AB+BA=0==>0=A^2B+ABA=AB+ABA,0=ABA+BA^2=ABA+BA===>ABA=-AB=-BA==>AB=BA
这不是原题吧由AB-A-B=0得(A-E)B=A[注意左右的差别]则B=(A-E)^-1A但从你题目中推不出A-E可逆若要继续讨论,请给原题再问:已知设n阶方阵A,B满足AB=A+B证明A-E可逆这就
AB是对称矩阵(AB)'=ABB'A'=AB你的前提条件不足,A,B应该是对称矩阵,这样就有BA=AB
证明:因为A,B正定,所以A^T=A,B^T=B(必要性)因为AB正定,所以(AB)^T=AB所以BA=B^TA^T=(AB)^T=AB.(充分性)因为AB=BA所以(AB)^T=B^TA^T=BA=
证明:由A+2B=AB得(A-2E)(B-E)=2E所以B-E可逆,且(B-E)^-1=(1/2)(A-2E).所以(B-E)(A-2E)=2E整理有BA=A+2B再由已知得AB=BA.
易知:A是m*n矩阵,且列向量组线性无关,所以r(A)=n,所以r(AB)=r(A)=n,因为n=r(AB)≤r(B)(或r(A))≤n(B是n阶矩阵)所以n≤r(B)≤n=>r(B)=n(2)此外,
R(A)+R(B)再问:能具体解释一下吗再答:可用基础解系证明。设R(A)=r,R(B)=s由AB=O知道,B的列向量都是AX=O的解向量,但B的列向量组只是AX=O的所有解向量的一个部分组,所以B的
都小于n有个结论:设A,B均为n阶非零矩阵,且AB=0,则R(A),R(B)满足R(A)+R(B)=1,r(B)>=0所以R(A),R(B都小于n
AB-B=A,(A-E)B-E=A-E,(A-E)(B-E)=E,所以A-E可逆逆矩阵为B-E由1知(A-E)和B-E互逆所以(B-E)(A-E)=E与(A-E)(B-E)=E,展开比较就可以得到AB
证明:由A可逆,有A^-1(AB)A=BA所以AB与BA相似.
AB=A-BAB-A+B-I=-I(A-I)(B+I)=-I(B+I)(A-I)=-IBA-A+B-I=-IBA=A-B所以AB=BA
如果A可逆的话是n*n的
若常数l=0则AB=A,即B=E;若常数l非零,E=(E-lA^{-1}B)B,所以B可逆且E=B(E-lA^{-1}B),相减得lA^{-1}B^2=lBA^{-1}B,左乘l^{-1}A右乘B^{
A+B-AB=0A+B-AB-E=-E(A-E)(-B+E)=-E(A-E)(B-E)=E所以A-E可逆,(A-E)-1=B-E
证∵(A-E)(B-E)=E又:det(A-E)*det(B-E)=detE=1∴det(A-E)≠0∴A-E是可逆阵
先对A是对角阵的情形进行证明再把一般的情形归结为上面的特殊情形
只要借助转置和逆的穿透律以及正交矩阵的定义即可,证明如图