设n是整数,证明6 | n(n 1)(2n 1).

来源:学生作业帮助网 编辑:作业帮 时间:2024/09/21 05:27:38
设n是整数,证明6 | n(n 1)(2n 1).
设f(1)=2,f(n)>0(n属于正整数)有f(n1+n2)=f(n1)f(n2),试猜想出f(n)的表达式,并证明你

猜想:f(n)=2^n用Cauchy法证明:首先对于正整数n有f(n)=f(1)^n=2^nf(0)=f(0)^2,则f(0)=0或1若f(0)=0则f(n)=f(n+0)=f(n)f(0)=0与f(

设n为任意整数,试证明n(n+1)(2n+1)是6的倍数

n(n+1)(2n+1)/6=1^2+2^2+.+n^2公式法如果不知道公式你还可以这样做因为n与(n+1)一奇一偶所以n(n+1)(2n+1)总是2的倍数如果n=3k3可以整除n=3k所以n(n+1

设n为任意整数,试证n(n+1)(2n+1)一定是6的倍数

一种解法n和n+1有一个是偶数所以n(n+1)(2n+1)能被2整除若n能被3整除,则n(n+1)(2n+1)能被3整除若n除3余数是2,则n+1除3余数是3,即能整除若n除3余数是1,3k+1,则2

设N为取值非负整数的随机变量,证明

注意到P(N=n)=P(N>=n)-P(N>=n+1),整个推导就很容易E(N)=Σ(n从0到∞)nP(N=n)=Σ(n从0到∞)n[P(N>=n)-P(N>=n+1)]=Σ(n从0到∞)[P(N>=

设n为任意整数,试正:n(n+1)(2n+1)一定是6的倍数

n和n+1有一个是偶数所以n(n+1)(2n+1)能被2整除若n能被3整除,则n(n+1)(2n+1)能被3整除若n除3余数是2,则n+1除3余数是3,即能整除若n除3余数是1,3k+1,则2n+1=

6|(n+n1+n2+.nk),证明6|(n^3+n1^3+n2.nk^3)

要证明6|(n^3+n1^3+n2.nk^3),可以分为两步:1.证明(n^3+n1^3+n2.nk^3)是偶数对任意的一个整数x,与x^3同为奇数或同为偶数所以n+n1+n2+.nk与n^3+n1^

证明:3整除n(n+1)(2n+1),其中n是任何整数

n为3的倍数时,n(n+1)(2n+1)能被3整除.n不是3的倍数时,n=3k+1或n=3k+2(k为自然数,包括0).n=3k+2时,n+1=3k+2+1=3(k+1),是3的倍数,n(n+1)(2

设n为任意整数,试证:n(n+1)(2n+1)一定是6的倍数

一种解法n和n+1有一个是偶数所以n(n+1)(2n+1)能被2整除若n能被3整除,则n(n+1)(2n+1)能被3整除若n除3余数是2,则n+1除3余数是3,即能整除若n除3余数是1,3k+1,则2

怎么证明N!/(M!* (N-M)!)必然是整数?

N!/(M!×(N-M)!)=〔N(N-1)(N-2)(N-3)……(N-M+1)〕÷M!,此为从N个元素中取M个元素的组合个数,因此N!/(M!*(N-M)!)必然是整数.再问:就是想证明,N个元素

n是整数,试证明n^3-3n^2+2n能被6整除

n^3-3n^2+2n=n(n*2-3n+2)=n(n-1)(n-2)这就是3个连续的整数相乘.三个相续整数中,至少有一个偶数,所以,原式的结果必定是偶数又三个连续整数中,必有一个能被3整除,所以,原

初等数论 证明:设m,n为整数,求证m+n,m-n与mn中一定有一个是3的倍数

分为:m=3*M+k,n=3*N+L,k=0或L=0:mn=3*M*n或3*m*Nk=1:l=1,m-n=3*(M-N)k=2:l=2,m-n=3*(M-N)k=1:l=2,m+n=3*(M+N)+3

设n为任意整数,试证:n(n+1)(2n+1)一定是6的倍数

楼上的说得对,用数学归纳法证明;证明1*1+2*2+3*3+.+(n-1)*(n-1)+n*n=(1/6)n(n+1)(2n+1)也就是说n(n+1)(2n+1)=6*[1*1+2*2+3*3+.+(

n是整数,试证明n³-3n²+2n能被6整除

n³-3n²+2n=n(n-1)(n-2)=(n-1)(n-2)n所以,三个连续整数一定能被6整除

初等数论设n是正整数,证明6| n(n + 1)(2n + 1).

∵n是正整数.∴n为奇数或偶数.若n为奇数(则n除以3余0或1或2)n+1为偶数(1)n除以3余数为0.则n是3的倍数.3*2=6(2)n除以3余1.则(2n+1)除以3余0因为1*1+1=3则(2n

设n是整数,证明数M=n³+3/2n²+n/2为整数,且它是3的倍数.

1)M=n³+3/2n²+n/2=M=n³+(3n+1)n/2n是奇数,3n+1是偶数n是偶数,3n+1是奇数数M=n³+3/2n²+n/2为整数得证

设x,y是区间[2,100]中的整数,证明:存在正整数n,使得x^2^n+y^2^n为合数

郭敦顒回答:∵x,y是区间[2,100]中的整数,不妨设x与y都是区间[2,100]中的奇数,于是x^2^n与y^2^n都是奇数,∴x^2^n+y^2^n=2N,∵2|2N,即2N是偶数,∴2N是合数

急1.设n是正整数,证明6| n(n + 1)(2n + 1).

证明6|n(n+1)(2n+1)sigeman^2=n(n+1)(2n+1)sigeman^2为整数所以哈哈只是有感而发称不上证明

1.设n是整数,证明3 | n(n + 1)(2n + 1).

1`.n(n+1)(2n+1)=n(n+1)[(n+2)+(n-1)]=n(n+1)(n+2)+(n-1)n(n+1)三个连续整数之积能被3整除,故3|n(n+1)(2n+1).2.p是奇数,p+1能

设N是整数,证明N^5与N的末位数字一定相同、

N^5-N=(N^4-1)N=(N-1)(N+1)(N^2+1)N(N-1)N(N+1)其中肯定有偶数,能被2整除,假设他不能被5整除那么N=5K-2或者N=5K-3K为整数N^2+1=(5K-2)^