设G是5阶的可逆方阵, 且|G|≠1, G*是G的伴随矩阵,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 21:45:07
由A^2=A知道A的特征值只能是1和0若|A+E|=0,则-1是其特征值,这不可能所以|A+E|≠0,即可逆
∵A2+AB+B2=0,∴A(A+B)=-B2,而B可逆,故:|-B2|=(-1)n|B|2≠0,∴|A(A+B)|=|-B2|≠0,∴A,A+B都可逆,证毕.
(A+E)的平方=OA²+2A+E=OA(A+2E)=-EA(-A-2E)=E所以有定义可知A可逆.
由(A+E)^2=0得A^2+2A+E=0A(-A-2E)=E所以A可逆且逆矩阵为-A-2E
∵n阶方阵A可逆⇔|A|≠0⇔r(A)=n∴C、D错误又A的行列式等于其特征值的乘积∴由|A|≠0可知,A的特征值全不为零∴A错误,B正确故选:B.
反证法若A是可逆矩阵,则A×A逆=EA=A×A×A逆=A×A逆=E矛盾
A^2+AB+B^2=0-A^2-AB=B^2A(-A-B)=B^2因为B可逆,所以:A(-A-B)B^(-1)B^(-1)=B^2B^(-1)B^(-1)=E,E为单位阵.所以A有逆(-A-B)B^
只需证明|3E-A|=0,由已知...(A满足的条件),则3是A的一个特征值,故|3E-A|=0,从而3E-A不可逆.
貌似选c这有例子,自己看看.加油,线性代数还是挺麻烦的,多看看书.
因为A可逆,所以A^(-1)ABA=BA所以AB与BA相似.
有个重要关系式:AA*=det(A)E,A*是A的伴随阵.取行列式得det(A)det(A*)=det(A)^ndet(E)=det(A)^n,由于det(A)不等于0,因此有det(A*)=(det
最有问题,能有反例,比如令A=B=0就满足AB=A-B=0但A+B=0,不可逆
将A^2+2A-4E=0变化为A^2+2A-3E=E,即(A+3E)*(A-E)=E,因为(A-E)可逆,所以A+3E的逆方阵为(A-E)^-1
(A+E)^2=0A²+2A+E=0A(A+2E)=-E两边取行列式,得|A|*|A+2E|≠0所以|A|≠0即A可逆.
假设A+E不可逆,则|A+E|=0所以-1是A的一个特征值设ξ是属于-1的一个特征向量则A^2ξ=A(-ξ)=-Aξ=ξ但A^2=A所以A^2ξ=Aξ=-ξ矛盾
(AB)^2=E不能推出AB=E只能知道ABAB=EA的逆矩阵*ABAB*A=A的逆矩阵*E*ABABA=Ea对
由A可逆,且AB=0等式两边左乘A^-1得A^-1AB=A^-10即B=0所以(A)正确
由|E-3A|=0知道|1/3*E-A|=0,根据特征值定义可知1/3是矩阵A的一个特征值.因为3阶矩阵只有3个特征值,所以矩阵A的全部特征值就是-2,6和1/3.因为矩阵的行列式就是它所有特征值的乘
A.若A或B可逆,则必有AB可逆这个不对,A,B都可逆时,AB才可逆B.若A或B不可逆,则必有AB可逆不对,原因同上C.若A,B均可逆,则必有A+B可逆不对,E和-E都可逆,和是0矩阵不可逆D.若A.