设f(x)在x=0处连续且lim其中a,b为常数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 19:31:03
设f(x)在x=0处连续且lim其中a,b为常数
设f(x)在[0,1]上具有二阶连续导数,且|f''(x)|

f(0)=f(x)+f'(x)(0-x)+0.5f''(a)(0-x)^2f(1)=f(x)+f'(x)(1-x)+0.5f''(b)(1-x)^2两式相减,移项,取绝对值得|f'(x)|=|f(1)

【高数】设函数f(x)在实轴上连续,f'(0)存在,且具有性质f(x+y)=f(x)f(y),试求出f(x)

f(0+0)=f(0)*f(0),f(0)=0or1因为f(x)连续,所以f(x+dx)-f(x)=f(x)f(dx)-f(x)=f(x)(f(dx)-1)f(x)(f(dx)-1)趋向于f(x)(f

设fx在x=0处连续,且limf(x)/x存在,证明f(x)在x=0处可导

因为limf(x)/x存在,且x=0处连续,所以f(0)=0,所以limf(x)/x=lim[f(x)-f(0)]/x-0=f'(0),所以f(x)在x=0处可导

设f(x)在x=0处连续,且lim(x趋于0)f(x)/x存在,证明,f(x)在x=0处可导

lim(x→0)f(x)/x存在说明x→0,limf(x)=f(0)=0所以limf(x)/x=lim[f(x)-f(0)]/x=f'(0)所以在x=0处可导

设f(x)在x=0处连续,且x趋近于0时f(x)/x极限存在,证明f(x)在x=0处连续可导

limf(x)/x存在,分母-->0,故limf(x)=0,f(x)在x=0连续,limf(x)=f(0)=0f'(0)=lim[f(x)-f(0)]/[x-0]存在,所以f(x)在x=0连续且可导

一道高数题,设函数f(x)在[0,+∞)上连续,且f(x)=x(e^-x)+(e^x)∫(0,1) f(x)dx,则f(

很高兴为您解答,liamqy为您答疑解惑如果本题有什么不明白可以追问,再问:l应为含x的函数。怎么能提到积分号外来呀?再答:是个常数,积分是常数区域,,

设函数f(x)满足条件f(x+y)=f(x)+f(y),且f(x)在x=0处连续,证明f(x)在所有的点x0处连续

证明f(x)在R上连续,即要证明对于任意x0,极限lim[f(x0+Δx)(Δx→0)存在且等于f(x0).因为f(x)在x=0处连续,所以limf(x)(x→0)=f(0)又因为f(x+y)=f(x

设函数f(x)具有连续的导数,且函数F(x)(解析式见图)在x=0处连续,求f'(0).

1=lim(x→0)F(x)所以lim(x→0)f(x)=01=lim(x→0)F(x)=lim(x→0)f(x)/x+lim(x→0)3ln(1+x)/x=lim(x→0)(f(x)-f(0))/(

设f‘(x)在[a,b]上连续,且f(a)=0,证明:|∫b a f(x)dx|

设g(x)=∫f(t)dt,则g'(x)=f(x),g"(x)=f'(x).g(x)在[a,b]二阶连续可导,且g(a)=0,g'(a)=f(a)=0.由带Lagrange余项的Taylor展开,存在

设f(x)在x=0处连续,且lim(x趋于0)f(x)/x^2=1 ,证明函数f(x)在x=0处可导且取得极小值.

1、f(0)=limf(x)=limf(x)/x^2*limx^2=1*0=0,于是f'(0)=lim[f(x)-f(0)]/x=limf(x)/x^2*x=limf(x)/x^2*limx=1*0=

求解两道极限题若函数f(x)再a点可导,则lim_[f(a)-f(a+2h)]/3h=?设f(x)在x=0处连续,则li

1.第一题,运用洛必达法则,lim[f(a)-f(a+2h)]/3h=lim[f'(a)-f'(a+2h)*2]/3=-f'(a)/32.同样是洛必达法则,lim[f(x)sinx/3x]=lim[f

设f(x)在[0,1]上有二阶连续导数,且满足f(1)=f(0)及|f''(x)|

Taylor展式:对任意的x,f(0)=f(x)+f'(x)(0-x)+f''(c1)(0-x)^2/2,f(1)=f(x)+f'(x)(1-x)+f''(c2)(1-x)^2/2.两式相减,得f'(

设f(x)在[0,1]上有连续导数,且f(x)=f(0)=0.证明

∵对任意的x,f(0)=f(x)+f'(x)(0-x)f(1)=f(x)+f'(x)(1-x)两式相加得∴2f(x)=(2x-1)f'(x)即f(x)=(x-1/2)f'(x)且0≤x≤1∴l∫f(x

设f(x)在x=0处连续,且lim (f(x)-1)/x=-1,x→0.,求f(0)

因为x→0时,lim(f(x)-1)/x存在,必然x→0时,lim(f(x)-1)=0,(否则已知的极限不存在)又因为f(x)在x=0处连续,所以limf(x)存在,且等于f(0)于是lim(f(x)

设函数f(x)在(-∞,+∞)上连续,且f(x)=e^x+1/e∫(0,1)f(x)dx,求f(x)

答案写得比较略,我写详细些你就容易懂了. 若有不懂请追问,如果解决问题请点下面的“选为满意答案”.

设f(x)在x=1处具有连续导数,且f ‘(1)=3,求f '(cos√x),x趋近于0+

是先求导数,再求极限lim[f(cos√x)]'=limf'(cos√x)(-sin√x)/(2√x)=(-1/2)limf'(cos√x)=-3/2

设函数f(x)在x=2处连续,且lim(x→2)f(x)/(x-2)(x→2)=3,求f'(2).

答案是3么由已知条件知道f(x)与x-2是同阶无穷小,所以f(2)是0又因为连续已知条件其实就是x=2的导数再问:是3,但是为什么f(2)是0呢?再答:f(x)与x-2是同阶无穷小

设f(x)在x=0处连续,且limx->0f(x)-1/x=a(a为常数),求f(0),f'(0)

显然对于极限limx->0[f(x)-1]/x,在x趋于0的时候,其分母x就趋于0那么如果极限值存在的话,显然分子也必须趋于0,即f(x)-1=0,所以f(0)=0而由洛必达法则可以知道,极限值等于对

设函数f (x)在x = 0点连续,且f (0) = 0,已知| g (x) |

f(x)在x=0点连续,且f(0)=0,∴对任意的ε>0,总存在δ>0,使得当|x-0|