设B是可逆矩阵,A和B同阶,且满足A B=O
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:33:47
∵A2+AB+B2=0,∴A(A+B)=-B2,而B可逆,故:|-B2|=(-1)n|B|2≠0,∴|A(A+B)|=|-B2|≠0,∴A,A+B都可逆,证毕.
最有问题,能有反例,比如令A=B=0就满足AB=A-B=0但AB=0,不可逆
AB-I=AB-(B^-1)*B=(A-B^-1)*B所以上式两边都右乘(AB-I)^-1,得到I=(A-B^-1)*B*(AB-I)^-1=(A-B^-1)*(B*(AB-I)^-1)那(A-B^-
反证,若E-BA不可逆,则存在X不为0,使(E-BA)X=0(方和有非零解)->X=BAX,则(E-AB)AX=AX-ABAX=AX-AX=0也即(E-AB)Y=0有非零解(其中Y=AX),与题设矛盾
写出A的实对称分A=QDQ^T,Q正交,D对角,且D=diag(a1E,...,akE),ai是互不相同的特征值.对应的B分块,AB=BA知道对应的Q^TBQ是块对角阵,每一个对角块都是反对称的,而a
证明(AB)是可逆矩阵?没弄错么这样就不是方阵了何来可逆.再问:我下面写了第二行是BA啊再答:AB列变换A-BB行变换A-BBBAB-AA0A+B所以其行列式为|A-B||A+B|A+B与A-B均为可
A^2+AB+B^2=0-A^2-AB=B^2A(-A-B)=B^2因为B可逆,所以:A(-A-B)B^(-1)B^(-1)=B^2B^(-1)B^(-1)=E,E为单位阵.所以A有逆(-A-B)B^
利用行列式的性质|ABBA|=|A+BBA+BA|=|A+BB0A-B|=|A+B||A-B|再根据矩阵可逆的充要条件是行列式不为0可知命题成立.
证明:由A可逆,有A^-1(AB)A=BA所以AB与BA相似.
DA应该是(-2)^n*|A|^-1B,除非AB可替换C应该是B^-1A^-1
我们发现这题的条件比较少,所以考虑用反证法假设E-BA不可逆,就是|E-BA|=0这样一来,(E-BA)x=0就有非零解.所以我们设α是一个非零解,然后把它(或者另外一个非零解)带入(E-AB)x=0
因为A^3-6E=0所以A(A^2-2A+4E)+2A^2-4A-6E=0所以A(A^2-2A+4E)+2(A^2-2A+4E)-14E=0所以(A+2E)(A^2-2A+4E)=14E所以B=A^2
AA*=|A|E;A*=|A|A-1(AB)*=|AB|(AB)-1=|A||B|(B-1)(A-1)={|B|B-1}{|A|A-1}=B*A*
因为:A^-1[(E+BA^-1)AB^-1]B==A^-1[AB^-1+E]B=E+A^-1B由于可逆阵之积仍为可逆阵,故知:(E+A^-1B)可逆,(AB^-1+E)可逆(按照积取逆的定理:(AB
AB+B=A(A+E)B=A+E-E(A+E)-(A+E)B=E(A+E)(E-B)=E所以A+E是可逆矩阵(A+E)(E-B)=(E-B)(A+E)=EA-AB+E-B=A+E-BA-BAB=BA
(B-1AB)T=BTAT(B-1)T由于AT=A,B-1=BT,(B-1)T=(BT)T=B原式=B-1AB故B-1AB是对称矩阵
2对于1,即使A和B同阶可逆,A+B也不一定可逆,例如设A=-B,此时A+B为0矩阵就不可逆
知识点:|AB|=|A||B|A可逆|A|≠0证:A,B都可逆|A|≠0,|B|≠0|A||B|≠0|AB|≠0AB可逆
AXB=C等式两边左乘A^-1,右乘B^-1得X=A^-1CB^-1(A)正确
两个相乘括号打开 整理得E 证明可逆