设A是n阶矩阵,且A^2-2A-2E=0, 则(A-E)^-1=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 04:09:57
因为A^2=AAα=λαλ^2=λ解得λ=1或0由于r(A)=r所以n阶矩阵A与对角矩阵1..1.1...0.0.0相似,其中λ=1为r重特征值,λ=0为n-r个则2E-A的特征值为1(r重),2(n
设矩阵A是n×n阶实对称矩阵,且A的平方等于0,证明A=0设A=[aij],其中i,j=1,2,...,n令C=A^2=A×A,依据矩阵乘法法则,C中主对角线上元素cii就是A的第i行和A第i列元素对
证明:由题设,n阶矩阵A满足A^m=0(零矩阵),因为(E-A)[E+A+A^2+A^3+.+A^(m-1)]=E-A^m=E-0=E,又因为[E+A+A^2+A^3+.+A^(m-1)](E-A)=
这道题在不同的阶段可以有不同的方法.如果学了Jordan标准型和矩阵的最小多项式,可以用:矩阵可对角化的充要条件是其最小多项式无重根(即Jordan块都是1阶的).由A²-A=2E,知x
可以|A||1/3A^-1-2A*|=|1/3AA^-1-2AA*|=|1/3E-2|A|E|=|1/3E-4E|=(1/3-4)^n原题是什么?3阶的?(3A)^-1最后结果再除|A|即可再问:对不
因为A的每行的元素的和是常量a所以A(1,1,...,1)^T=a(1,1,...,1)^T即a是A特征值而A的所有特征值的乘积等于|A|,由A可逆,|A|≠0所以a≠0.A^-1的特征值是1/a,对
A^2=A得到A(A-E)=0由r(A)+r(B)-n
设j是的一特征值,则有X,使得AX=jX.而又有A^2×X=A(AX)=A(jX)=j(AX)=j^2×X因为A^2=A,故有:j^2×X=j×X即j^2=j求得j=0j=1由A^2=A有A^2-A-
D,很显然A=I和O时等式都满足,所以A,B都不对,至于C显然矩阵1000满足,但是它不是OD只要在等式两侧同时乘以A得逆矩阵就可以得到
AA^*=|A|E说明AA^*的第一行第一列元素等于|A|E的第一行第一列的元素,而|A|E的第一行第一列的元素为|A|,而AA^*的第一行第一列的元为a11^2+a12^2+...+a1n^2,其他
如果A可逆的话是n*n的
由于A是对称矩阵,因此存在正交矩阵T使得T^(-1)AT为对角矩阵,其中对角线上的元素为A的所有特征值,因此只要证A的特征值只有0和1即可由于A^2=A,所以A的特征是0或1,证毕
用伴随阵与逆矩阵的关系如图证明并计算行列式.经济数学团队帮你解答,请及时采纳.
书上例题.由A^2=A得出A的最小多项式只可能是三种情形1)A=0,显然命题成立2)A-E=0,命题也显然成立3)A(A-E)=0,最小多项式没有重根,也就是说没有若当块,换句话说就是特征值0,1的特
设B为A的伴随矩阵,E为单位阵,AB=|A|E,|A||B|=|A|^n,|B|=|A|^(n-1)
A^2=AA^2-A-2E=-2E(A-2E)(A+E)=-2E(2E-A)(A+E)=2E|2E-A||A+E|=2^n现在求|A+E|的值A是实对称阵,必可相似对角化,存在可逆阵P,使得P^(-1
由A^2+2a=0知道,A的特征值都是方程x^2+2x=0的根,所以A的特征值是0与-2,那么kA+E的特征值是k*0+1与k*(-2)+1,即1与1-2k,要想kA+E正定,则1-2k>0,所以k<
A^2=E,|A|^2=1,|A|=1,r(A)=n
1)r(A)=n等价于det(A)≠0等价于det(A*)=1等价于A*可逆等价于r(A*)=n2)
因为A^2-A-2I=0所以(A-2I)(A+I)=0所以r(A-2I)+r(A+I)