设A是n阶矩阵,且AA=I,A行列式=-1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 02:05:45
想复杂了,用秩很简单的AA^T是m阶方阵而r(AA^T)
E+A^T=(E+A)^T两边取行列式|E+A^T|=|(E+A)^T|=|E+A|再问:甚妙甚妙!!!非常感谢!这个题我明白了。但是这个题里面A^T=A这个式子能不能成立呢?也就是说,已知AA^T=
设矩阵A是n×n阶实对称矩阵,且A的平方等于0,证明A=0设A=[aij],其中i,j=1,2,...,n令C=A^2=A×A,依据矩阵乘法法则,C中主对角线上元素cii就是A的第i行和A第i列元素对
aa^T=(aa^T)^Tleta=(a1,a2,a3...an),theentryati-throwandj-thcolomnofaa^T=ai*aj,thesametimewehavetheent
证:因为A为正交矩阵,所以A^TA=E(单位矩阵)从而||Aa||=√(Aa)^T(Aa)=√a^TA^TAa=√a^Ta=||a||再问:||a||?==√a^Ta这是为什么再答:不谢,那是公式。
A'是A的转置吧根据矩阵乘法定义,AA'的第i行第j列元素等于A的第i行和A'的第j列(也就是A的第j行的转置)的积.所以AA'第i个对角线上的元素是A的第i个行向量和自己转置后点乘的结果,也就是自己
因为AA*=|A|I=2I所以|AA*+2I|=|4I|=4^n|I|=4^n.再问:这个I是什么东西?再答:是单位矩阵
AA'=E,是吧等式两边取行列式得|A|^2=1因为|A|
这类问题可用证明齐次线性方程组同解的方法显然,AX=0的解都是A'AX=0的解.反之,若X1是A'AX=0的解则A'AX1=0所以X1'A'AX1=0故(AX1)'(AX1)=0所以有AX1=0即A'
AA^*=|A|E说明AA^*的第一行第一列元素等于|A|E的第一行第一列的元素,而|A|E的第一行第一列的元素为|A|,而AA^*的第一行第一列的元为a11^2+a12^2+...+a1n^2,其他
如果A可逆的话是n*n的
证:如果r(A)
A-E=A-AA^T=A(E-A^T)=A(E-A)^T,两边取行列式,得|A-E|=|A|×|(E-A)^T|=|E-A|=(-1)^n×|A-E|=-|A-E|所以,|A-E|=0
对于n阶矩阵A而言,一个数λ乘A是λ乘A中的每个元素.从行列式而言,可以从一行(或一列)提取公因子到行列式外面计算,这样从每一行都提出公因子λ后,一共提出了n个λ相乘.
R(A)=n-1,首先可以确定,A的基础解系所含的解向量个数是n-(n-1)=1个那么就很简单了,找一个向量,代入AX=0可以使之成立就行了.利用题目的暗示,这个向量可能是a我们试一试代入AX=0(E
令B=A',则B'B=0所以对任意n维列向量x都有x'B'Bx=0即有(Bx)'Bx=0.所以Bx=0取ei=(0,...,0,1,0,...,0)',第i个分量等于其余为0的n维向量.i=1,2,.
因为A^2-A-2I=0所以(A-2I)(A+I)=0所以r(A-2I)+r(A+I)
a^Ta=(E-2aa^t)^T(E-2aa^t)=(E-2aa^t)(E-2aa^t)=E-2aa^t-2aa^t+4aa^taa^t=E-4aa^t+4a(a^ta)a^t=E-4aa^t+4aa
这是一个基本公式,AA*=A*A=|A|E,其中E是单位阵.经济数学团队帮你解答,请及时采纳.