设ab都为属于P上的n介方阵,AB=BA,A有n个不同的特征值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 15:06:40
这个直接双向证明就行了.证明:(A+B)^2=A^2+B^2+2ABA^2+B^2+AB+BA=A^2+B^2+2ABAB+BA=2ABBA=AB#再问:这里的A、B是n阶方阵对这个证明有什么影响啊?
B是方程AX=0的非零解,故充要条件是|A|=0
1.AB=0,则r(A)+r(B)=1,r(B)>=1所以A,B的秩都小于n2.AB=0两边取行列式即得|A||B|=0再问:我想问的是两道题的区别?麻烦老师再解答一下再答:由(1)知必有|A|=0且
存在元素为整数的n阶方阵B,使得AB=E,即方阵A存在逆矩阵.一个方阵,存在逆矩阵的充分必要条件是行列式不为0
|AB|=|A||B|=|B||A|=|BA|
因为I+AB可逆,所以(I+AB)(I+AB)^(-1)=I,推出(B^(-1)B+AB)(B^(-1)B+AB)^(-1)=I,(B^(-1)+A)BB^(-1)(B^(-1)+A)^(-1)=I也
第一个:用矩阵的乘法定义就可以了:你看当m=1的时候,结论成立,假设m=k-1的时候成立,证m=k的时候成立就可以了.第二个:把基础解系的定义搞明白就行了:也就是说,齐次方程组的任何解都可以用基础解系
因为[A^(-1)]*AB*A=BA,所以AB与BA相似.注:A^(-1)指的是A的逆矩阵.
分三步:1.因为a为n维单位列向量,所以有a'a=1(记a'=aT)2.A'A=(E-2aa')(E-2aa')=E-4aa'+4aa'aa'=E-4aa'+4aa'=E3.||AB||=√(AB)'
AB*(AB)^(-1)=EAB^(-1)=B^(-1)A^(-1)AB*(AB)^(-1)=AB*B^(-1)*A^(-1)=A[B*B^(-1)]A^(-1)=E故:B*B^(-1)不等于0B*B
选B因为若|A|不等于0,则A可写成一系列初等矩阵的乘积,AB相当于对B作一系列初等变换,初等变换不改变矩阵的秩,所以AB同B有相同的秩,但是,由于AB=0,所以其秩为0,而B不等于0,所以其秩至少为
由AB=A+B,有(A-E)(B-E)=AB-A-B+E=E.A-E与B-E互为逆矩阵,于是也有(B-E)(A-E)=E.展开即得BA=A+B=AB.
AB=0左右取行列式得|A||B|=0所以|A|=0或|B|=0
由A可逆,且AB=0等式两边左乘A^-1得A^-1AB=A^-10即B=0所以(A)正确
证明:设A有特征值S,则A^k的特征值为S^k.(在线性代数的习题里有此类定理).由A^k=O可知:S^k=0(零矩阵的特征值只有0).故S=0,可知I-A的特征值只有1,故|I-A|=1(对应的行列
由A有n个不同的特征值,每个特征值对应的特征空间维数为1,且所有特征向量线性无关.设a为A的特征值,x为对应的非零特征向量,则ABx=BAx=B(Ax)=B(ax)=a(Bx),这说明Bx也是A的对应
我只说简单的步骤,你可以自己试着推一下.(1)n阶方阵可以化成上三角阵和一些初等矩阵的乘积.(2)证明初等矩阵的乘积的行列式等于他们各自行列式的乘积.(3)证明上三角阵和上三角阵的乘积的行列式等于他们
BA=A+BB=BA-AB=(B-I)A(I=identitymatrix)(B-I)^(-1)*B=(B-I)^(-1)*(B-I)*A(B-I)^(-1)*B=A(B-I)^(-1)*B*B=AB
AE(EB)的行列式=0E(E-BAB)的行列式=E0(BAB-E)的行列式(分A的阶数是奇数和偶数就可以了)=|AB-E|