设ab均为n阶方阵,A非零,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 16:48:08
AB=0|AB|=0|A|*|B|=0|A|=0或|B|=0
行列式等于零,Ax=0有非零解,所以存在B.(简单只需取一个解,加上n-1个零解,构成B)
可以这么证:设A是N×N的方阵.首先,存在非零列向量X(NX1),满足AX=0,因为A不满秩.其次,存在非零列向量Y(N×1),满足A(T)Y=0,因为A(T)也不满秩(T代表矩阵转置).然后,考虑这
证明:必要性.因为存在一个非零矩阵B,使得AB=O所以B的列向量都是AX=0的解向量所以AX=0有非零解所以|A|=0.充分性.因为|A|=0,所以AX=0有非零解b1,...,bs令B=(b1,..
用反证法.若R(A)=N,则A可逆.A^(-1)[AB]=A^(-1)*0=0,又A^(-1)[AB]=B,因此,B=0.与B不等于0矛盾.故,R(A)
D正确.若AX=b有解,则有无穷多解但也可能无解所以D正确
不对,比如a=1122a的行列式就等于0
A+B=AB,所以(A-I)(B-I)=I,说明A-I与B-I互为逆矩阵,设它们为X,Y,即A=I+X,B=I+Y,X与Y互逆,所以,AB=(I+X)(I+Y)=I+X+Y+XY=2I+X+Y,BA=
因为[A^(-1)]*AB*A=BA,所以AB与BA相似.注:A^(-1)指的是A的逆矩阵.
由AB=A+B,有(A-E)(B-E)=AB-A-B+E=E.A-E与B-E互为逆矩阵,于是也有(B-E)(A-E)=E.展开即得BA=A+B=AB.
0或-75或45.行列式为特征值之积,另一特征值可能为0,也可能5,-3两个中有一个为两重
假设R(A)=N那么A为满秩矩阵,那么A可逆,A*A的逆矩阵*B=0,所以B=0,与条件矛盾.所以R(A)〈N
由A可逆,且AB=0等式两边左乘A^-1得A^-1AB=A^-10即B=0所以(A)正确
必要性:对AB=0两边取行列式,即│AB│=│A││B│=0,因B为非零矩阵,故│B│不等于零,所以,│A│=0充分性:假设AB=C,对AB=C两边取行列式,即│AB│=│A││B│=│C│,因为│A
AB=0,则B的列向量都是Ax=0的解因为B≠0,所以Ax=0有非零解,所以|A|=0.同理.AB=AC即A(B-C)=0若能推出B=C则Ax=0只有零解,所以|A|≠0|A|≠0r(A)=nAx=0
主要工具都是|MN|=|M|*|N|(1)kA=(kE)A,所以|kA|=|kE|*|A|.kE是n阶对角阵,对角元全为k,所以行列式|kE|=k*k*...*k=k^n.所以|kA|=k^n|A|(
又是没悬赏的哈AB=0说明B的列向量都是齐次线性方程组Ax=0的解而B≠0说明Ax=0有非零解所以|A|=0,即A不可逆
我只说简单的步骤,你可以自己试着推一下.(1)n阶方阵可以化成上三角阵和一些初等矩阵的乘积.(2)证明初等矩阵的乘积的行列式等于他们各自行列式的乘积.(3)证明上三角阵和上三角阵的乘积的行列式等于他们
BA=A+BB=BA-AB=(B-I)A(I=identitymatrix)(B-I)^(-1)*B=(B-I)^(-1)*(B-I)*A(B-I)^(-1)*B=A(B-I)^(-1)*B*B=AB
这是个定理或性质.它的证明比较繁琐,若学过Laplace展开还好一点.记住这个结论就行了,不必深究它的证明!