设A={0 3 3 1 1 0 1且AB=A 2B,求B

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 09:14:50
设A={0 3 3 1 1 0 1且AB=A 2B,求B
设a,b=R+,且a不等于b,求证 2ab/a+b

a,b=R+,且a不等于b,a+b>2根号(ab)所以1/(a+b)

设AB两个事件且P(B)>0,P(A|B)=1,则必有

概率的数字1比较特殊则B包含于A所以A+B=A故选择C再问:那A+B也应该>B啊,B也应该是对的啊再答:那A=B呢?所以B少了等号包含于有可能是相等呀

设a,b属于R,且a+b=1,则ab+1/ab的最小值是

ab+1/ab=1+1/ab然后..(1/ab)*(a+b)用不等式定理就OK了

设A、B都是n阶矩阵,且AB=O,证明R(A)+R(B)

设A的R(A)=r,则Ax=0的解空间的维数为n-r,再设B=[b1,b2,..,bn],其中b1,b2,..,bn是矩阵B的列,由AB=O,得Ab1=O,Ab2=0,...,Abn=0,故b1,b2

设a,b属于R+且a+b=3,则ab²的最大值

题有问题吧,没有最大值,最小值.只有极值再问:再答:a=3-bab^2=(3-b)b^2=-b^3+3b^2令y=-b^3+3b^2导函数y'=-3b^2+6b可得b在2处取得极大值,也是最大值。所以

设A,B为两个随机事件,且P(AB)>0,则P(A|AB)=( )

我想是1P(A|AB)=P(AAB)/P(AB)=P(AB)/P(AB)=1这是我的见解不知是否正确,期待高手早点给出正确答案.

1.设集合A={a,a,ab}.B={1,a,b}且A=B,求a,b

1.因为A=B,由题目可知有两种情况:a^2=1,ab=b和a^2=b,ab=1.第一种情况解得a=1或者-1,若啊a=1,则a^2=a,不满足条件.所以啊=-1,此时b只能等于0.第二种情况解得a=

设A,B都是n阶矩阵,且(AB)^2=E,则必有 选3

还可能等于-1.再答:可以收藏我哦

线性代数:设A是可逆矩阵,且A+AB=I,则A逆等于?

A*(E(单位矩阵)+B)=EA*A逆=E所以A逆=E+B这样的题不用写具体数的,只要化成A*A逆的形式就行~

设A,B均为n阶矩阵,且AB=BA求证r(A+B)

这个比较麻烦,要借助向量空间的维数定理证明:记w1,w2,w3,w4分别为A,B,A+B,AB的行向量组生成的向量空间易知w3包含在w1+w2中.由维数定理dimw3

设A,B均为n阶矩阵,且AB=BA,证r(A+B)

不是这个稍等再问:额,不是这道题啊再答:这个要借助空间维数定理证明:记w1,w2,w3,w4分别为A,B,A+B,AB的行向量组生成的向量空间易知w3包含在w1+w2中.由维数定理dimw3

a、b为实数,且ab=1,设P=aa+1+bb+1

∵P=a(b+1)+b(a+1)(a+1)(b+1)=2ab+a+bab+a+b+1,把ab=1代入得:2+a+b2+a+b=1;Q=b+1+a+1(a+1)(b+1)=a+b+2ab+a+b+1,把

线性代数 设A,B为n阶方阵,B不等于0,且AB=0,

选B因为若|A|不等于0,则A可写成一系列初等矩阵的乘积,AB相当于对B作一系列初等变换,初等变换不改变矩阵的秩,所以AB同B有相同的秩,但是,由于AB=0,所以其秩为0,而B不等于0,所以其秩至少为

设A、B均为n阶方阵,A可逆,且AB=0,则

由A可逆,且AB=0等式两边左乘A^-1得A^-1AB=A^-10即B=0所以(A)正确

设a,b属于R+,且a+b=1,则ab+ 1/ab的最小值是( )

首先要搞清楚一个函数f(x)=x+1/x,他的单调性是在x>0的时候,当00,且根据均值不等式,a

设a>1,b>1且ab-(a+b)=1,那么(  )

∵a>1,b>1且ab-(a+b)=1,∴1+a+b=ab≤(a+b2)2,化为(a+b)2-4(a+b)-4≥0,解得a+b≥2(2+1).故选A.

设A=(011 101 010)且6A+AB=B,求矩阵B

6A+AB=B于是6A=(-A+E)BB=(-A+E)^(-1)*6A=(1-1-1-1-10-11)^(-1)*6A下略.

设A、B为任意n阶方阵,且BA=A+B,则AB=

BA=A+BB=BA-AB=(B-I)A(I=identitymatrix)(B-I)^(-1)*B=(B-I)^(-1)*(B-I)*A(B-I)^(-1)*B=A(B-I)^(-1)*B*B=AB

设A.B都是n级矩阵,且A+B=AB,求证:AB=BA

利用A-E与B-E的可逆性如图证明.经济数学团队帮你解答,请及时采纳.