设a b为同阶方阵,且满足A=1 2(B E)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:32:42
设a b为同阶方阵,且满足A=1 2(B E)
设B为可逆矩阵,A是与B同阶方阵,且满足A2+AB+B2=0,证明A和A+B都是可逆矩阵.

∵A2+AB+B2=0,∴A(A+B)=-B2,而B可逆,故:|-B2|=(-1)n|B|2≠0,∴|A(A+B)|=|-B2|≠0,∴A,A+B都可逆,证毕.

设A为2n+1阶方阵,且满足AA^T =E,|A|>0,证明行列式|A-E|=

|A-E|=|A-AA^T|=|A(E-A^T)|=|A||E-A^T|=|A||E-A|---(E-A^T)^T=E-A=|A|(-1)^(2n+1)|A-E|=-|A||A-E|所以|A-E|(1

设a b c为同阶方阵,其中c为可逆矩阵,且满足c^-1ac=b,求证:对任意正整数m,有c^-1a^mc=b

结论应该是c^(-1)*a^m*c=b^m,不是等于b用归纳法:m=1即为条件;设c^(-1)*a^(m-1)*c=b^(m-1),则c^(-1)*a^m*c=c^(-1)*[a^(m-1)*a]*c

设B是可逆矩阵,A是与B同阶的方阵才,且满足A2+AB+B2=0{A平方B平方},证明A和B都是可逆矩阵.

A^2+AB+B^2=0-A^2-AB=B^2A(-A-B)=B^2因为B可逆,所以:A(-A-B)B^(-1)B^(-1)=B^2B^(-1)B^(-1)=E,E为单位阵.所以A有逆(-A-B)B^

设A为n阶方阵,且满足A^2-3A+2E=0,证明A的特征值只能是1或2

设A的特征值是a,则a^2-3a+2是A^2-3A+2E的特征值.由已知A^2-3A+2E=0,而零矩阵的特征值只能是零,所以a^2-3a+2=0,即(a-1)(a-2)=0.所以a=1或a=2.即A

设A,B是n阶方阵,满足AB=A-B,证明AB=BA

AB=A-BAB-A+B-I=-I(A-I)(B+I)=-I(B+I)(A-I)=-IBA-A+B-I=-IBA=A-B所以AB=BA

设A为n阶方阵且满足条件A^2+A-6E=0,则(A+4E)的-1次方=

(A+4E)(A-3E)=A^2+A-12E=-6E=>(A+4E)^(-1)=-(A-3E)/6

设n阶方阵A和B满足条件A+B=AB,证明A-E为可逆矩阵

证∵(A-E)(B-E)=E又:det(A-E)*det(B-E)=detE=1∴det(A-E)≠0∴A-E是可逆阵

设A,B为同阶方阵,证明|AB|=|BA|

|AB|=|A||B|=|B||A|=|BA|得证

线性代数 设A,B为n阶方阵,B不等于0,且AB=0,

选B因为若|A|不等于0,则A可写成一系列初等矩阵的乘积,AB相当于对B作一系列初等变换,初等变换不改变矩阵的秩,所以AB同B有相同的秩,但是,由于AB=0,所以其秩为0,而B不等于0,所以其秩至少为

设A,B为n阶方阵,且AB=A+B,试证AB=BA

由AB=A+B,有(A-E)(B-E)=AB-A-B+E=E.A-E与B-E互为逆矩阵,于是也有(B-E)(A-E)=E.展开即得BA=A+B=AB.

设A为n阶方阵,且A=A^2;,则(A-2E)^-1

A=A^2A^2-A=0A^2-2A=-AA(A-2E)=-AA-2E=-E(A-2E)*(-E)=E所以:(A-2E)^-1=-E

设A,B为n阶方阵,满足关系AB=0,则必有_____

AB=0左右取行列式得|A||B|=0所以|A|=0或|B|=0

设A、B均为n阶方阵,A可逆,且AB=0,则

由A可逆,且AB=0等式两边左乘A^-1得A^-1AB=A^-10即B=0所以(A)正确

方阵性质证明问题设AB为n阶方阵,证明|AB|=|A||B|

我只说简单的步骤,你可以自己试着推一下.(1)n阶方阵可以化成上三角阵和一些初等矩阵的乘积.(2)证明初等矩阵的乘积的行列式等于他们各自行列式的乘积.(3)证明上三角阵和上三角阵的乘积的行列式等于他们

.设A为n阶方阵,且满足AA^T =E和|A|=-1,证明行列式|E+A|=0.

你是问的下面这三个等式为什么成立,还是你的标题的题目呢?如果是下面这三个等式的话第一个等式是因为(E+A')=E'+A'=(E+A)'第二个等式是因为一个矩阵的行列式与它的转置的行列式相等.

设A、B为任意n阶方阵,且BA=A+B,则AB=

BA=A+BB=BA-AB=(B-I)A(I=identitymatrix)(B-I)^(-1)*B=(B-I)^(-1)*(B-I)*A(B-I)^(-1)*B=A(B-I)^(-1)*B*B=AB