n阶矩阵A,A²-3A-2E=0,试证明A可逆
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:29:20
知识点:1.AB=0,则r(A)+r(B)
因为A^2-4A+3E=0所以A(A-2E)-2(A-2E)-E=0所以(A-2E)(A-2E)=E所以A-2E可逆所以2E-A可逆所以B=(2E-A)^T(2E-A)是正定矩阵--正定合同于单位矩阵
1(A+E)(A^4-A^3+A^2-A+E)=A^5-A^4+A^3-A^2+A+A^4-A^3+A^2-A+E=A^%+E=E所以A+E可逆逆矩阵为A^4-A^3+A^2-A+E(A-E)(A^4
这个.(a+e0)(0a-e)作初等变换.接着作下去吧.不好打.
证A可逆A²+A-3E=0A(A+E)=3EA(A+E)/3=E所以A可逆,且A的逆矩阵为(A+E)/3证A+2E可逆A²+A-3E=0(A+2E)(A-E)=E所以A+2E可逆,
1.A^2-2A-E=A^2-2A-15E+14E=(A+3E)(A-5E)+14E=0所以:(A+3E)*[(A-5E)/(-14)]=EA+3E)^-1=(A-5E)/(-14),即(5E-A)/
由于(E-A)(E+A)=(E+A)(E-A)=E²-A²=E-A²对(E-A)(E+A)=(E+A)(E-A),两边分别左乘和右乘(E-A)逆有(E+A)(E-A)逆=
因为2A(A-E)=A^3所以A^3-2A^2+2A=0所以A^2(A-E)-A(A-E)+A-E=-E即(A^2-A+E)(E-A)=E所以E-A可逆,且(E-A)^-1=A^2-A+E.
因为A^2(A-2E)=3A-11E所以A^3-2A^2-3A+11E=0所以A^2(A+2E)-4A(A+2E)+5(A+2E)+E=0所以(A^2-4A+5E)(A+2E)=E所以A+2E可逆,且
对.A(A-2E)=-3E,A可逆,A^(-1)=-(A-2E)/3
原方程A^2-3A-6E=0.可化为:(A-E)(A-2E)=8E,即可得到,A-2E可逆,且其逆矩阵为(A-E)/8
你是从数的结论来处理矩阵x^2=0则x=0但矩阵不是这样.A^2=0不一定有A=0如A=0100
刚看到因为A^2-3A+2E=0所以A(A-3E)=-2E所以A-3E可逆,且(A-3E)^-1=(-1/2)A.
由题意A^2-3A+2E=0即A^2-3A=-2EA^2-3AE=-2EA(A-3E)=-2EA(A-3E)/(-2)=EA(-A+3E)/2=E所以A可逆,且其逆阵为(-A+3E)/2
因为A^2-2A-3E=0所以A(A-E)-(A-E)-4E=0所以(A-E)^2=4E所以A-E可逆,且(A-E)^-1=(1/4)(A-E).
A*2-4A+3E=0(A-E)(A-3E)=0A=E或A=3EA=3E时A-3E是0阵,不可逆.舍去、A=E时,A-3E=-2,0,00,-2,00,0,-2其逆敌阵:-1/2,0,00,-1/2,
首先A^2-5A+6E=E,而A^2-5A+6E可分解为(A-2E)x(A-3E),所以(A-2E)^(-1)=A-3E.
/>n阶矩阵A满足A^2=E,===》矩阵A的零化多项式无重根,并且根只能为正负1,===》矩阵A的最小多项式无重根,并且根只能为正负1,===》矩阵A可以对角化,并且矩阵A的特征值只能为正负1,又因
因为A+E不可逆所以|A+E|=0所以-1是A的一个特征值所以|A|/(-1)=-2是A*的一个特征值
(A-2E)(A+E)=A^2-A-2E而A^2=A,所以(A-2E)(A+E)=-2E即(A-2E)(-A/2-E/2)=E这样就可以由逆矩阵的定义知道,A-2E的逆矩阵为-A/2-E/2即(A-2