讨论函数y=│x│=x,x>0,-x,x

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 18:13:11
讨论函数y=│x│=x,x>0,-x,x
讨论下列函数在x=0处的连续性和可导性,y=xsin1/x(x不等于0),y=0(x=0)如图

x=0+f(x)=0;x=0-f(x)=0;故f(x)在0处连续;求导你就先求出导函数然后看在0两边导函数函数值是否相等再问:能把过程写出来,拍给我吗?再问:懂了,谢谢

讨论函数f(x)=|x|/x,当x趋向于0时的极限

f(x)=|x|/x,左极限为-x/x=-1,右极限为x/x=1,左右极限不相等,函数在0点无极限.你也可以作图,在x=0是,f(x)是跳跃间断点.

讨论函数y=(1/x)+x的单调区间和奇偶性

f(x)=(1/x)+x,f(-x)=-((1/x)+x)=-f(x)所以是奇函数,根据函数定义可知x不等于0,是对号函数,两个顶点是(-1,-1)和(1,1)

讨论函数y=x|x|在点x=0处的可导性

显然此函数可用以下分段函数形式表示y=x²(x≥0)y=-x²(x<0)下面只需要求出分段点的左右导数并比较是否相等就可以得出x=0点是否可导的结论f'(x)(x→0+)=2x(x

讨论函数y=5^(-x²+2x+3)的单调性

t=-x^2+2x+3在(-∞,1)上单增,在(1,+∞)上单减又y=5^t单增由复合函数单调性可知其在(-∞,1)上单增,在(1,+∞)上单减再问:我们老师说这种复合函数求单调性是不是一增一减同为减

设y=x-2,x小于0;y=0,x=0;y=x+2,x大于0;讨论函数f(x)在x=0处连续性

在x=0处不连续.证明:f(0)=0lim(x->0-)(x-2)=-2lim(x->0+)(x+2)=2可见极限不相等.所以在x=0处不连续.

讨论函数f(x,y)={ln(1+xy)/x ,x≠0 ; y ,x=0}的连续性

取定y=y0,lim(x--0)f(x,y0)=lim(x--0){ln(1+xy0)/x}=lim(x--0)(x*y0-x^2*y0^2+...)/x=lim(x--0)(y0-x*y0^2+..

讨论函数y=|x|在x=0处的连续性和可导性?

这个函数在x=0处连续但不可导.再问:需要过程再答:连续就不说了再答:当x大于0时导数为1,当x小于0时导数为-1,左右导数不同,所以不可导。再问:说说连续嘛,急呀再答:函数左极限等于右极限等于函数在

讨论函数y=|x|在x=0处的连续性和可导性

x≥0时,y=|x|=xx=0时,y=0x≤0时,y=|x|=-xx=0时,y=0函数在x=0处连续.x≥0时,y'=x'=1x≤0时,y'=(-x)'=-11≠-1函数在x=0处不可导.

讨论函数y=2x-sinx在(0,2π)上的单调性

y=2x-sinx在(0,π/2)和(3π/2,2π)上的单调递增在(π/2,3π/2)上的单调递减

讨论分段函数y(x)在x=0处的连续性和可导性

无穷小和有界函数相乘结果是无穷小sin(1/x)和cos(1/x)均为有界函数故lim(x→0)x^2*sin(1/x)=lim(x→0)x^2*cos(1/x)=lim(x→0)x*sin(1/x)

讨论分段函数连续性x>1 y=√3x x

f(1)=1lim(x从正无穷趋向于1)f(x)=sqrt(3)不等于f(1)所以不连续

讨论下列函数在x=0处的可导性:1、y=x^(1/3);2、y=e^(x^2/3)*ln(1+x)

因为根据y=x^(1/3)的图像可知,当x趋于0时,函数的图像与y轴相切,并且无限趋近于y轴,所以在0这一点的导数为tan90,tan90为正无穷大,所以在0处不可导.按照导数的定义y=e^(x^2/

讨论下列函数连续性 f(x,y)=(x-y)/(1+x^2+y^2) 要有具体的证明过程

记得好像是,分别求x,y和y,x的偏导数,如果二者相等就是连续的.

y=|x|(x-a),讨论函数的奇偶性

f(x)=|x|(x-a)f(-x)=|-x|(-x-a)=-|x|(x+a)当a=0时,奇函数,a0时无奇偶性.