计算行列式Dn=丨X1+3
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 00:09:05
该行列式每行元素之和相等,此时把各列都加到第1列,提出第1列公因子,然后将第1行乘-1分别加到其余各行D就化为了‘爪’型.按最后1行展开,接着按第1行第1列展开得:Dn=(n-1-a)(a+1)(-a
行列式可以处理成:|1b100|01b20001b30001∴行列式=1
用性质化为上三角形.经济数学团队帮你解答.请及时评价.
将第2,3,.,n列均加到第1列,然后第1,2,.,n-1行均减去第n行,得D=(-1)^[n(n-1)/2][x+(n-1)a](x-a)^(n-1)再问:再答:
计算行列式Dnxa...aax...a......aa...x把第2,3,...,n列都加到第1列,提出公因子x+(n-1)a,得1a...a1x...a......1a...x第1行乘-1加到2,3
行列式展开=x1^3+x2^3+x3^3-3x1x2x3而x1^3+x2^3+x3^3-3x1x2x3=(x1+x2+x3)(x1^2+x2^2+x3^2-x1x2-x2x3-x3x1)(展开右边即得
第一列最后一个数为n,以第一列展开,行列式=(-1)的2n-1次方*10...002.0003..0..0...n-1=(-1)的2n-1次方*n!
已看大神回答,仅补充供参考:设A=(x1,x2,...,xn),由已知:AAT=1,(注:AT表示矩阵A的转置矩阵)则,R(AAT)=R(ATA)=1ATA是对称矩阵,可对角化,特征值为n-1个0,一
根据定义,取a1,a2,a3,a4所在位置(1,4)(2,3)(3,2)(4,1)得出N(1234)=0,N(4321)=6均为偶数,故为正;其他各项中至少含有一个零元素,故其他项均为0,故D=a1a
第3题将各列加到第一列,然后将第一行乘-1加到各行就化成上三角形.第5题第n列加到第n-1列,然后第n-1列加到第n-2列,……,第3列加到第2列,然后第2列加到第1列,就得到上三角行列式.经济数学团
此题运用的是韦达定理的推广.在2次方程情形,韦达定理有一个结论是两根之和等于(-b/a),推广到3次方程有三根之和:x1+x2+x3=-b/a(其中a为最高次项系数,b为次高项系数,依此类推,初等代数
给你一个提示你自己做这种行列式是属于每行元素之和都想等的,那你就把每一列都加到第一列上去就有相同的第一列x+y+z然后提出来行列式里面剩下四个1,再把一消掉尽可能的多制造0出来用行列式展开定理即可
请问你学到展开定理了吗?只能用性质做?再问:学了,展开,余子式,性质都学了,那应该怎么做?再答:a0...010a...00.........00...a010...0a第1行减a倍的第n行,得00.
所求行列式=012...n-1101...n-2210...n-3......n-1n-2...0依次作:ri-r(i+1),i=1,2,...,n-1-111...1-1-11...1-1-1-1.
所有列加到第1列所有行减第1行行列式化为上三角D=(x+(n-1)a)(x-a)^(n-1)再问:能详细点吗?最好发张图再答:所有列加到第1列x+(n-1)aa...ax+(n-1)ax...a...
这个题主要考察行列式展开性质和行列式的性质
第2题0123...n-11012...n-22101...n-33210...n-4.n-1n-2n-3n-4...0依次作:c1-c2,c2-c3,...,c(n-1)-cn得-1-1-1-1..
看最后三行,按最后一行展开,ncosa对应的子式是D(n-1),但是最后1行倒数第二列对应的是D(n-2)所以递推式D(n)=ncosaD(n-1)-D(n-2)001(n-2)cosa100001(
鸟棉b再问:这家是我看过信用最好的再答:请查看33088.info
这是爪形行列式,若学习过,可以直接按展开公式得结果.Dn=n!*(1-1/2-1/3-1/4-...-1/n)若没有学习过,也可以按r1-r2/2-...-ri/i-...-rn/n化为下三角(或c1