n*x^n求和
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:27:40
若x=1Sn=1+2+3+……+n=n(n+1)/2若x不等于1xSn=x+2x^2+3x^3+……+n*x^n所以Sn-x*Sn=1+x+x^2+x^3+……+x^(n-1)-n*x^nSn(1-x
e^x=1+x/1!+x^2/2!+x^3/3!+...;e^(-x)=1-x/1!+x^2/2!-x^3/3!+...;e^x+e^(-x)=2(1+x^2/2!+x^4/4!+...);所以1+x
解题思路:(1)的关键是根据等差数列的定义,进行判断(要善于“被题目牵着鼻子走”);(2)的关键是熟练掌握等差数列的通项公式;(3)的关键是根据数列{bn}的通项公式使用“裂项相消法”求和解题过程:v
Sn是等差数列an=2n-1,等比数列bn=(-x)^(n-1)前n+1的和Sn-(-x)Sn=(a1b1+a2b2+...an+1bn+1)-(a1b2+a2b3+...+an+1bn+2)=a1b
1^2+2^2+……+n^2=n(n+1)(2n+1)/6
令An=(n+1)(n+2)由比值审敛法:p=lim(n->无穷)An/An+1=1=>收敛半径R=1/p=1=>收敛域:(-1,1)下面来讨论x=-1和1处的敛散性:1.当x=1时,原级数E(n+1
令Sn=1+2x+3x²+...+nx^(n-1)则xSn=x+2x²+3x³+...+(n-1)x^(n-1)+nx^nSn-xSn=(1-x)Sn=1+x+x
∑(n从1到正无穷)n(n+2)x^n=x∑(n从1到正无穷)n(n+2)x^(n-1)=x∑(n从1到正无穷)[(n+2)x^n]′=x[∑(n从1到正无穷)(n+2)x^n]′∑(n从1到正无穷)
鉴于没有悬赏,电脑也不是很好用,我只能告诉你方法了先对x积分一下,得到∑[1/n!]x^(n+1)这个的和大概是x*e^x吧,然后求导就行(n+1)/n!拆开后求和
可以用归纳法比较容易首先,n=1比较容易证明然后假设n时成立求n+1时的式子,代入得到
收敛等比级数和=q/(1-q),q为公比
先求收敛域,你自己求吧原式=求和:1/2*(2n+1)*(x/2)^2n=求和:[(x/2)^2n+1]'=[求和:(x/2)^2n+1]'=[x/(2-x^2/2)]'
懂了吗?关键就是将那个式子拆开,之后分别求和即可不懂请追问满意望采纳O(∩_∩)O
和为e^3,只需利用e^x的幂级数展开式
乘公比错位相减法乘X得到xSn=x+2x^2+3x^3…+nx^n相减得到(1-x)Sn=1+x+x^2+x^3…+x^(n-1)-x^n移项得到Sn=(1+x+x^2+x^3…+x^(n-1)-x^
本题的的正常解题方法是:1、先求出收敛域;2、在收敛域内,求导、积分并用;3、最后化成公比小于1的无穷等比数列,利用求和公式得出结果.
也可以倒过来.∑(0,∞)x^(n+1)=x/(1-x),|x|
思路应该没错,先逐项积分对和式求导
n/(n+2)!=(n+2-2)/(n+2)!=1/(n+1)!-2/(n+2)!.所以原式=1/1!-2/2!+1/2!-2/3!+.=1/1!-1/2!-1/3!-.=1-(e-2)=3-e.