若矩阵满足AB=AC,则B=C的充分条件为什么
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 19:06:59
不对,如果A可逆的话容易推出B=C.但是没有要求A是什么矩阵就不好轻易推出来了,比如A是零矩阵,那么B,C都是任意的,也不一定相等.
奇怪!不对.只有A是列满秩时才有此结论.
A,B满足上述条件称为同时对交化.当且仅当A,B可交换,A,B可同时对角化.具体的证明,如果C^(-1)AC与C^(-1)BC均为对角矩阵,则C^(-1)ACC^(-1)BC=C^(-1)BCC^(-
ab/(a+b)=1/3(a+b)/ab=3a/ab+b/ab=31/b+1/a=31/b+1/c=41/a+1/c=52(1/a+1/b+1/c)=121/a+1/b+1/c=6(ab+bc+ca)
由AB=AC,得到(A-1A)B=(A-1A)C即B=C故填对.
碰到这种问题不要偷懒,直接用待定系数法把B的9个元素设出来,然后乘开来比较等上面的做法做过一遍之后再做取巧一点的办法:(A-E)B=B(A-E),同样乘开来比较上面两个都做过之后可以设法去证明与Jor
同样B和A也能做乘法,所以B的列数=A的行数.设A是m*n矩阵,则B一定是n*m矩阵.那么AB就是m*m矩阵,BA就是n*n矩阵.由AB=BA可知m=n.所以A和B是同阶方阵.
正确AB=AC可变形为A(B-C)=0,即若A不为0,问是否存在D时AD=0?肯定存在,比如A={(1,0)',(0,0)'}D={(0,0)',(0,1)'}AD=0,但A和D都不为0
证明:因为AB=BA,AC=CA,且乘法满足结合律,所以有A(BC)=(AB)C=(BA)C=B(AC)=B(CA)=(BC)A.
AB=AC,而矩阵A可逆,设其逆矩阵为A^(-1)在等式两边同时左乘A^(-1),得到A^(-1)AB=A^(-1)AC,显然A^(-1)A=E,故B=C
BC-CB=iA,两边左乘B得BBC-BCB=C-BCB=iBA两边右乘B得BCB-CBB=BCB-C=iAB两式相加得AB+BA=0后一个同理
A(BC)=(AB)C=(BA)C=B(AC)=B(CA)=(BC)A
个人认为那个“问题补充”里的条件用不到,就可以证明了.证:由于A和B能做乘法,所以A的列数=B的行数,否则矩阵乘法无法进行.同样B和A也能做乘法,所以B的列数=A的行数.设A是m*n矩阵,则B一定是n
∵a(a+b+c)≤(1/2)[a2+(a+b+c)2]bc≤(1/2)(b2+c2)∴a(a+b+c)+bc≤(1/2)[a2+(a+b+c)2+b2+c2]∵(1/2)[a2+(a+b+c)2+b
不对.只有当A是列满秩时才有此结论!
AB=AC,则A(B-C)=0所以B-C是由Ax=0的解空间中向量构成的矩阵A即便不是零矩阵,只要A的行列式等于0,Ax=0也能有非零解,故B-C可以不等于零而A是m*n矩阵,r(A)=n时,Ax=0
A(B+C)=AB+AC=BA+CA=(B+C)A,A(BC)=﹙AB﹚C=﹙BA﹚C=B﹙AC﹚=B﹙CA﹚=(BC)A.
a²+b²+c²=ab+ac+bc2(a²+b²+c²)=2(ab+ac+bc)(a²-2ab+b²)+(b²
不对.比如B=0;c只是和A相关的为0就不行.AB=AC可变形为A(B-C)=0,即若A不为0,问是否存在D时AD=0?肯定存在,比如A={(1,0)',(0,0)'}D={(0,0)',(0,1)'
A列满秩时,齐次线性方程组Ax=0只有零解.若AB=AC则A(B-C)=0所以B-C的列向量都是Ax=0的解所以当A列满秩时,B-C=0即有B=C