若实对称矩阵A满足A*2=O则A=O
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 11:00:18
用这个思路证.因为A2=0,且A为对称矩阵(即a(i,j)=a(j,i)),所以矩阵A里面的任一元素满足∑a(i,j)?j,i)=0,所以a(i,j)=0.因为a(i,j)是任意的,所以A=0.得证.
:设a是A的特征值.则a^5-2a^4+5a^3-8a^2-9是A^5-2A^4+5A^3-8A^2-9E的特征值.而A^5-2A^4+5A^3-8A^2-9E=0,零矩阵的特征值只能是0所以a^5-
A为实对称矩阵,则A~ΛΛ=P^(-1)AP,A=PΛP^(-1)B=A^2-2A-E=PΛ^2P^(-1)-2PΛP^(-1)-PEP^(-1)=P(Λ^2-2Λ-E)P^(-1)P^(-1)BP=
证:设a是A的特征值.则a^5-2a^4+5a^3-8a^2-9是A^5-2A^4+5A^3-8A^2-9E的特征值.而A^5-2A^4+5A^3-8A^2-9E=0,零矩阵的特征值只能是0所以a^5
因为(A-E)(A²+E)=0所以A的特征值a满足(a-1)(a^2+1)=0由于实对称矩阵的特征值都是实数所以a=1故A的特征值为1,1,.,1又因为实对称矩阵可对角化所以A=Pdiag(
由于A是对称矩阵,因此存在正交矩阵T使得T^(-1)AT为对角矩阵,其中对角线上的元素为A的所有特征值,因此只要证A的特征值只有0和1即可由于A^2=A,所以A的特征是0或1,证毕
A秩为3,则,x为A特征值对角矩阵diag(x1,x2,x3,0)A^2+A=0(A+E)A=0r(A+E)+R(A)《4r(A+E)《1即r(A+E)=1A化为对角矩阵diag(x1,x2,x3,0
证:设a是A的特征值.则a^5-2a^4+5a^3-8a^2-9是A^5-2A^4+5A^3-8A^2-9E的特征值.而A^5-2A^4+5A^3-8A^2-9E=0,零矩阵的特征值只能是0所以a^5
A^2=2A说明A的特征值只可能是0或者2,所以A-I的特征值就是1或-1再利用实对称阵正交相似于对角阵得到A-I是正交阵另一种做法是直接算出(A-I)(A-I)^T=I,但上面的方法也应该掌握
设λ是A的特征值则λ^3-2λ^2+4λ-3是A^3-2A^2+4A-3E的特征值而A^3-2A^2+4A-3E=0,零矩阵的特征值只能是0所以λ^3-2λ^2+4λ-3=0.λ^3-2λ^2+4λ-
再问:为什么是330不是003呀?再答:因为它的秩为2,如果是0,0,3的话,秩就是1了。再问:我就是这个地方不明白,可以再说清楚一点吗π_π再答:实对称矩阵必相似于一个对角矩阵,且对角矩阵的对角元素
若A正定,则存在正交矩阵T,A=T^(-1)PT.其中P=diag(a1,…an)为A的标准型,ai>0.记Q=diag(√a1,…√an),取B=T^(-1)QT即可!若A=B^2,B实对称,类似上
特征方程为:f(λ)=λ^8-5λ^7+6λ^2-3λ+1=0其因式分解后为(λ-x1)(λ-x2)(λ-x3)...(λ-x8)其中x1,x2,...,x8为A的特征值,比较两式可发现x1*x2*.
由A^2+2a=0知道,A的特征值都是方程x^2+2x=0的根,所以A的特征值是0与-2,那么kA+E的特征值是k*0+1与k*(-2)+1,即1与1-2k,要想kA+E正定,则1-2k>0,所以k<
因为A^2+4A+4E=0所以(A+2E)^2=0所以A的特征值只能是-2.又由于A是实对称矩阵(可对角化)所以存在可逆矩阵P满足P^-1AP=diag(-2,-2,...,-2)=-2E所以A=P(
因为A为反对称矩阵则A=-A^T(A^2)^T=(A^T)2=(-A)(-A)=A^2是实对称矩阵再问:a是反对称矩阵b实对称矩阵证明:(1)ab-ba是对称矩阵?(2)ab是反对称矩阵的充分必要条件
设a是A的特征值则a^2+2a是A^2+2A的特征值(这是个定理)因为A^2+2A=0,且零矩阵的特征值只能是0所以a^2+2a=0即a(a+2)=0所以a=0或a=-2.即A的特征值只能是0或-2.
特征方程为r³-3r²+5r-3=0r³-r²-2r²+2r+3r-3=0r²(r-1)-2r(r-1)+3(r-1)=0(r-1)(r
一楼是利用实对称矩阵是正规矩阵,所以可以对角化.不过这个是相似标准型的内容,开学到现在可能还没学到这部分内容吧.其实没那么麻烦.你看看A*A的对角线是什么.由于对称性,第一个对角线元素就是a11^2+
A^2-5A=O,可以得出λ^2-5λ=O(这个不懂的话再问).所以λ1=0,λ2=5.因为R(A)=2,根据A实对称,可以对角化,且对角阵的对角元是特征值.对角化是初等变化,不改变秩.所以对角阵的秩