若函数y=cos(3x y)的图像关于原点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:59:14
cos(xy)=x+y两边分别对x求导:-sin(xy)*(y+xy′)=1+y′y′=-[1+ysin(xy)]/[xsin(xy)+1]=========左边对cos求导:-sin(xy)再对xy
两端对x求导得e^(x+y)*(x+y)'-sin(xy)*(xy)'=0e^(x+y)*(1+y')-sin(xy)*(y+y')=0解得dy/dx=y'=[e^(x+y)-ysin(xy)]/[s
我来试试吧...z=e^xy*cos(x+y)Z'x=ye^xycos(x+y)-e^xysin(x+y)Z'y=xe^xycos(x+y)-e^xysin(x+y)故dZ=[ye^xycos(x+y
functionz=yourfunc(x,y)%scriptforf(x,y)=x2+cos(xy)+2y%inputscalar:x,y%outputscalar:z%writtenbyyourna
由题知,y*(cosx+3)=cosx-3则:cosx=-3(y+1)/(y-1)由cosx的取值范围知:-1≤cosx≤1所以-1≤-3(y+1)/(y-1)≤1由-3(y+1)/(y-1)≥-1解
隐函数求导设z=x²y²-cos(xy)dy/dx=-(δz/δx)/(δz/δy)=-(2xy²+ysin(xy))/(2x²y+xsin(xy))=-y/x
cos(xy)-x^2·y=1两边对x求导-sin(xy)*(y+xy')-2xy-x^2y'=0===>x=1,y=0,y'=0-cos(xy)(y+xy')^2-(y'+y'+xy")-2y-2x
两边对x求导:-(y+xy')sin(xy)=2xy^2+2x^2yy'解得:y'=-[ysin(xy)+2xy^2]/[2x^2y+xsin(xy)]所以dy=-[ysin(xy)+2xy^2]/[
y=12[1+cos2(x-π12]+12[1-cos2(x+π12]-1=12[cos(2x-π6)-cos(2x+π6)]=sinπ6•sinx=12sinx.T=π.故答案为:π.
f(x,y)=e^(x+y)+cos(xy)=0 //: 利用隐函数存在定理:f 'x(x,y)=e^
y=cos(π/3-x)y'=-sin(π/3-x)*(-1)=sin(π/3-x)y=e^3xy'=e^(3x)*3=3e^(3x)y=In(3-x)y'=1/(3-x)*(-1)=1/(x-3)y
xy'+y+sin(πy)πy'=0y'=-y/[x+πsin(πy)]
对等式两边求导,得y'=-sin(xy)*(y+xy')y'=-ysin(xy)/[xsin(xy)+1]
应经求过导了先整体对cos求导,再对xy求导,根据乘法的求导规则就是y+xy'
画出图像即可令t=sinx所以t的范围[-1,1]y=cost[-1,1]在-π/2到π/x之间所以最大值在t=0处取得为1,最小值在t=-1或1处取得为cos1所以它的值域为1>=cos(sinx)
y'=-sin(4-3X)*(-3)=3sin(4-3X)
cos(xy)=x-y,隐函数,两边求导-sin(xy)*(xy)'=1-y'-sin(xy)*(y+xy')=1-y'-ysin(xy)-xcos(xy)*y'=1-y'y'[1-xsin(xy)]
对两边取对数:xy+3lny=lncos(x-y)两边同时对x求导:y+xy'+y'*3/y=-tan(x-y)*(1-y')整理得:y'=tan(x-y)+y/tan(x-y)-x-3/y不知道对不
复合函数求导y'=[cos(sinx)]'=sin(sinx)·(sinx)‘=sin(sinx)·cosx