lim(根号1 xsinx - cosx) sinx^2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 10:00:01
lim(根号1 xsinx - cosx) sinx^2
lim x趋近于0 x的平方/(根号(1+xsinx)-根号(cosx))

先有理化变成2x^2/(1+xsinx-cosx)然后罗毕达法则4x/(sinx+xcosx+sinx)=4x/(2sinx+xcosx)=4/(2cosx+cosx-xsinx)=4/3前面的极限全

lim (1/(xsinx)-1/x^2)x~0

lim(1/(xsinx)-1/x^2)=lim[x-sinx]/[x²sinx]=lim[x-sinx]/x³=lim[1-cosx]/3x²=limsinx/6x=1

lim(x→0)(1-cosx)/(xsinx)=?

lim(x→0)(1-cosx)/(xsinx)=lim(x→0)(1-(1-2(sinx/2)^2)/(xsinx)=(1-(1-2*x^2*(1/2)^2))/x^2=1/2

lim(x→0) sinx-x(x+1)/xsinx

用2次罗比达法则lim(x→0)sinx-x(x+1)/xsinx=lim(x→0)(cosx-2x-1)/(sinx+xcosx)=lim(x→0)(-sinx-2)/(2cosx-xsinx)=(

lim x→0 1-cosx/xsinx

x→0时,运用等价无穷小,即1-cosx~x^2/2(1-cosx等价于x^2/2,在乘除中可以直接替换)sinx~x(同理,在乘除中可以直接替换)于是原式=(x^2/2)/(x*x)=1/2

2.5计算极限lim(x→0) (1-cos2x)/xsinx

cos2x=1-2sin²x(1-cos2x)/xsinx=[1-((1-2sin²x)]/xsinx=2sin²x/xsinx=2sinx/xlim(x→0)(1-co

求,x趋近于0时,lim[根号下(1+xsinx)-cosx]/x的平方=

在x趋于0时,cosx趋于1那么根号下(1+xsinx)-cosx等价于根号下(1+xsinx)-1即0.5*xsinx,而sinx等价于x所以原极限=lim(x趋于0)0.5x^2/x^2=0.5故

lim(x→0)(1-cos2x)/xsinx

1-cos2x=2sin²x(1-cos2x)/xsinx=2sinx/xlim(x→0)=2lim(x→0)sinx/x=2

lim(根号下1+xsinx再减去1)除以(cosx-1) (x趋近于0)

分子有理化边长xsinx/(cosx-1)*1/(根号下1+xsinx再加1)其中1/(根号下1+xsinx再加1)的极限是1/2所以原极限=xsinx/2(cosx-1)=2xsin(x/2)cos

lim x趋向于0 根号1+xsinx -根号cosx/xtanx

楼上,根号cosx不能直接等价于1的根号1+xsinx-根号cosx=(根号1+xsinx-1)-(根号cosx-1)0.5xsinx-0.5*(-0.5)x^23x^2/4书上的答案是正确的再问:0

1-√cosx/xsinx 求Lim X趋向于0

lim(x->0)1-√cosx/xsinx=lim(x->0)1-√cosx/x²=lim(x->0)(1-√cosx)(1+√cosx)/(1+√cosx)x²=lim(x->

lim(x趋向0)(1-cos2x)/xsinx怎么解?

lim(x趋向0)(1-cos2x)/xsinx=lim(x趋向0)[(1-1+2Sin^2(x)]/xsinx=lim(x趋向0)2sin^2x/xsinx=lim(x趋向0)2sinx/x=2

X趋向0 lim(xsinx)/(1-cosx)

X趋向0lim(xsinx)/(1-cosx)=X趋向0lim(xsinx)(1+cosx)/(1-cos^2x)=X趋向0limx(1+cosx)/sinx)=X趋向0lim(1+cosx)[x/s

lim(x~无穷)xsin1/x-1/xsinx

能写清楚点卟.再问:xsin(1/x)-(1/x)sinx,,x趋向于无穷的极限再答:原式=x*1/x-sinx/x=1-0=1ps;(对于sinx/x.由于sinx为有界函数。故当x趋近于无穷大时s

lim (x->0) (根号√1+XsinX - 根号√cosX)/arcsinx^2

过程我难得打了,就告诉你结果吧!1/4.再问:arcsinx^2等于什么?是等于x^2么?为什么

计算lim xsinx (e^1/x -1) x->∞

你的这种思路完全正确.如果是我也会这样解题.这是不易出错的解法.他给的答案是用到洛必达法则.即0/0时同时对分子和分母求导.其实第二步用变量代换u=1/x会更容易一些.

lim(x→0)(1-cos4x)/xsinx

点击图片就可以看清楚,加油!

利用等价无穷小求极限lim 根号(1+xsinx)-1 _________________x→0 xarctanx答案是

先进行分子有理化:[根号(1+xsinx)-1]/(xarctanx)=[根号(1+xsinx)-1][根号(1+xsinx)+1]/[(xarctanx)[根号(1+xsinx)+1]=(xsinx

求解函数极限,lim x趋于无穷 (xsinx)/(根号下x四次方+x二次方+1)=

这个极限是0分子上,sinx是有界函数而分母是x^2,因此极限是0