lim(e^x 7) (2e^ 5)当x趋于﹣无穷时的极限
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 02:16:27
有没有写错?x趋于0三项的极限都存在所以原式=e^0+sin0+0^2=1
所谓等阶无穷小代换, 是以罗毕达法则为保证的, 很多教师在学生还没有学罗毕达法则时,用罗毕达法则试出一大串所谓的“等阶无穷小”,然后要学生死记硬背,把一门生气勃勃的微积分教成了靠死
是x→0吗?属于1^(∞)型,取自然对数,用罗彼塔法则,分子、分母同时求导,原式=lim[x→0]ln(x+e^2x)/sinx=lim[x→0][(1+2e^2x)/(x+e^2x)]/cosx=[
lim(x~0)((e^x+e^2x+e^3x)/3)^1/x=lim(x~0)(e^(ln(e^x+e^2x+e^3x)/3)/x)=e^(lim(x~0)(ln(e^x+e^2x+e^3x)/3)
lim∞>ln(1+e^x)/根号(1+x^2)罗比达法则lim∞>ln(1+e^x)/根号(1+x^2)=lim∞>[e^x/(1+e^x)])/[x/√(1+x^2)]=lim∞>[√(1+x^2
Lim(x/e)^((x-e)^-1)=lim(1+(x-e)/e)^[(x-e)^-1]=lim(1+(x-e)/e)^[e/(x-e)]*(1/e)=e^(1/e)
|cosx|≤1lim(x->∞)e^(-x^2).cosx=0再问:������ϸ����再答:|cosx|��10��e^(-x^2).cosx��e^(-x^2)0��lim(x->��)e^(
是当x->0的吧!先利用等价无穷小代换将sinx^2换成x^2;利用罗必塔法则(两次)原式=lim(e^x-e^-x)/2x=lim(e^x+e^-x)/2=1
∵lim(x->0)[ln(x+e^x)/x]=lim(x->0)[(1+e^x)/(x+e^x)](0/0型极限,应用罗比达法则)=(1+1)/(0+1)=2∴lim(x->0)[(x+e^x)^(
先等价无穷小替换e^x-1~x(x-->0),然后用L'Hospital法则,……
用洛必达法则,极限为无穷大.
利用等价无穷小和L'Hospital'sRule即可lim(x->0)(e^x-e^sinx)/[(tanx)^2*ln(1+2x)]=lim(x->0)e^x(e^(x-sinx)-1)/[(tan
lim(x趋向0)e^x+2=1+2=3x趋向于0时e^x的极限是1
那个不是定积分?用洛必达法则lim(x->0){[∫(e²-e^x)dx]/x²}=lim(x->0)[(e²-e^x)/2x]=lim(x->0)[-e^x/2)=-e
再问:可以写一下详细步骤吗谢谢再答:等价无穷小或者罗必塔法则学过没?再问:没有再答: 再问:嗯学过前面那个再问:谢谢你再答:
-2再问:我需要过程。。再答:lim(e^tanx-e^3x)/sinx为0/0型,用洛必达法则。分子分母分别求导=lim(csc^2*e^tanx-3e^3x)/cosx=(1-3)/1=-2
有两种方法,都稍微麻烦一些:1、利用罗比达法则,分子分母求导lim(e^sinx-e^x)/(sinx-x)=lim(cosxe^sinx-e^x)/(cox-1)第二次分子分母求导:=lim[(e^
lim(x→0)(e^x-sinx-1)/(arcsinx^2)=lim(x→0)(e^x-sinx-1)/x^2(0/0)=lim(x→0)(e^x-cosx)/(2x)(0/0)=lim(x→0)
原式=lim(x->0)sinx(secx-1)/x^3=lim(x->0)(secx-1)/x^2=lim(x->0)(1-cosx)/x^2cosx=lim(x->0)2sin^2(x/2)/x^