已知菱形ABCD的边长为1.∠ADC=60°,等边△AEF两边分别交边DC、CB于点E、F.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 07:15:00
已知菱形ABCD的边长为1.∠ADC=60°,等边△AEF两边分别交边DC、CB于点E、F.
已知菱形ABCD的边长为1.∠ADC=60°,等边△AEF两边分别交边DC、CB于点E、F.
(1)特殊发现:如图1,若点E、F分别是边DC、CB的中点.求证:菱形ABCD对角线AC、BD交点O即为等边△AEF的外心;
(2)若点E、F始终分别在边DC、CB上移动.记等边△AEF的外心为点P.
①猜想验证:如图2.猜想△AEF的外心P落在哪一直线上,并加以证明;
②拓展运用:如图3,当△AEF面积最小时,过点P任作一直线分别交边DA于点M,交边DC的延长线于点N,试判断1/DM+1/DN是否为定值.若是.请求出该定值;若不是.请说明理由.
已知菱形ABCD的边长为1.∠ADC=60°,等边△AEF两边分别交边DC、CB于点E、F.
(1)特殊发现:如图1,若点E、F分别是边DC、CB的中点.求证:菱形ABCD对角线AC、BD交点O即为等边△AEF的外心;
(2)若点E、F始终分别在边DC、CB上移动.记等边△AEF的外心为点P.
①猜想验证:如图2.猜想△AEF的外心P落在哪一直线上,并加以证明;
②拓展运用:如图3,当△AEF面积最小时,过点P任作一直线分别交边DA于点M,交边DC的延长线于点N,试判断1/DM+1/DN是否为定值.若是.请求出该定值;若不是.请说明理由.
(1)证明:如图1,分别连接OE、0F,
∵四边形ABCD是菱形,
∴AC⊥BD,BD平分∠ADC.AO=DC=BC,
∴∠COD=∠COB=∠AOD=90°.
∠ADO=∠ADC=×60°=30°,
又∵E、F分别为DC、CB中点,
∴OE=CD,OF=BC,AO=AD,
∴0E=OF=OA,
∴点O即为△AEF的外心.
①猜想:外心P一定落在直线DB上.
证明:如图2,分别连接PE、PA,过点P分别作PI⊥CD于I,PJ⊥AD于J,
∴∠PIE=∠PJD=90°,
∵∠ADC=60°,
∴∠IPJ=360°-∠PIE-∠PJD-∠JDI=120°,
∵点P是等边△AEF的外心,
∴∠EPA=120°,PE=PA,
∴∠IPJ=∠EPA,
∴∠IPE=∠JPA,
∴△PIE≌△PJA,
∴PI=PJ,
∴点P在∠ADC的平分线上,即点P落在直线DB上.
②1/DM+1/DN为定值2.
当AE⊥DC时.△AEF面积最小,
此时点E、F分别为DC、CB中点.
连接BD、AC交于点P,由(1)
可得点P即为△AEF的外心.
如图3.设MN交BC于点G,
设DM=x,DN=y(x≠0.y≠O),则CN=y-1,
∵BC∥DA,
∴△GBP≌△MDP.
∴BG=DM=x.
∴CG=1-x
∵BC∥DA,
∴△NCG∽△NDM,
∴CN/DN=CG/DM,
∴(y-1)/y=(1-x)/x,
∴x+y=2xy,
∴1/x+1/y=2,
即1/DM+1/DN=2.
∵四边形ABCD是菱形,
∴AC⊥BD,BD平分∠ADC.AO=DC=BC,
∴∠COD=∠COB=∠AOD=90°.
∠ADO=∠ADC=×60°=30°,
又∵E、F分别为DC、CB中点,
∴OE=CD,OF=BC,AO=AD,
∴0E=OF=OA,
∴点O即为△AEF的外心.
①猜想:外心P一定落在直线DB上.
证明:如图2,分别连接PE、PA,过点P分别作PI⊥CD于I,PJ⊥AD于J,
∴∠PIE=∠PJD=90°,
∵∠ADC=60°,
∴∠IPJ=360°-∠PIE-∠PJD-∠JDI=120°,
∵点P是等边△AEF的外心,
∴∠EPA=120°,PE=PA,
∴∠IPJ=∠EPA,
∴∠IPE=∠JPA,
∴△PIE≌△PJA,
∴PI=PJ,
∴点P在∠ADC的平分线上,即点P落在直线DB上.
②1/DM+1/DN为定值2.
当AE⊥DC时.△AEF面积最小,
此时点E、F分别为DC、CB中点.
连接BD、AC交于点P,由(1)
可得点P即为△AEF的外心.
如图3.设MN交BC于点G,
设DM=x,DN=y(x≠0.y≠O),则CN=y-1,
∵BC∥DA,
∴△GBP≌△MDP.
∴BG=DM=x.
∴CG=1-x
∵BC∥DA,
∴△NCG∽△NDM,
∴CN/DN=CG/DM,
∴(y-1)/y=(1-x)/x,
∴x+y=2xy,
∴1/x+1/y=2,
即1/DM+1/DN=2.
已知,等边△AEF的边长于菱形ABCD的边长相等,点E、F分别边BC、CD上,则∠B_____.要过程
23.(10分)如图,菱形ABCD中,AB=1,∠ABC=60º,等边△AEF的顶点E,F分别在菱形的边DC、CB上.(
已知:如图,在菱形ABCD中,E、F分别是CB、CD上的点,正三角形AEF的边长与菱形的边长相等.试探索∠CEF与∠CF
已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求证:∠AEF=∠AFE.
如图,正△AEF的边长与菱形ABCD的边长相等,点E,F分别在BC,CD上,则∠AFD为?
(2012•汕头二模)如图,在边长为4的菱形ABCD中,∠DAB=60°.点E、F分别在边CD、CB上,点E与点C、D不
如图,已知正方形ABCD中,F为DC边上一动点,DC=nDF,AE⊥AF交CB的延长线于E,连接EF
如图,菱形ABCD中,E,F分别是CB,CD上的点,且BE=DF,求证:∠AEF=∠AFE
在菱形ABCD中,AB=4,∠BAD=120,△AEF为正方形,点E,F分别在菱形的边BC,CD上滑动,且E,F不与B,
菱形ABCD,∠B=60°,一个60°的角的顶点在C点,并绕点C旋转,旋转时角的两边始终分别与AB、AD交于E、F两点.
一道趣味几何题如图,菱形ABCD中,E、F分别是CB、CD上的中点,且BE=DF,∠B=60度,求证△AEF为等边三角形
已知E F分别为正方形ABCD边BC CD上的点 且△AEF为等边三角形,若正方形的边长为1,求EF的长