等边三角形ABC中点d.e分别在边bc和ac上
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 14:00:17
△ABC中AB=AC,且角BAC=120°∴∠B=∠C=30°又∵AEG为等边△∴∠AEG=∠AGE=60°则∠AEB=∠AGC=120°△ABE和△AGC中,已知两个角,可以求出第三个角即∠BAE=
∵△ABC是等边三角形又∵DEF是三边的中点∴DE是三角形的中位线根据中位线定理知DE=1/2AC同理其他两条边也有同样的性质.所以DE=EF=DF
解题思路:(1)根据等边三角形的性质证明△ABE≌△CAD就可以得出结论;(2)由三角形全等可以得出∠ABE=∠CAD,由外角与内角的关系就可以得出结论.解题过程:如图,已知△ABC为等边三角形,点D
判断:EN与MF相等(或EN=MF),点F在直线NE上,理由如下:连接DE,DF,EF.∵△ABC是等边三角形,∴AB=AC=BC.又∵DE,DF,EF为三角形的中位线.∴DE=DF=EF,∠FDE=
(1)∵△ABC为等边三角形,∴AB=AC=a,∠B=60°,又D为BC的中点,∴AD⊥BC,AD平分∠BAC,∴BD=CD=12a,在Rt△ABD中,根据勾股定理得:AD=AB2−BD2=32a;在
这里是一个纯代数的证明,抛砖引玉,希望有更加简单的证明,仅供参考再问:这个题目是初一学生的作业,怎么可能用这么复杂的方法来解答?请问你还有简单的方法吗!?再答:不好意思,不知道这个题目的背景,初中离得
∵△ABC是等边三角形又∵DEF是三边的中点∴DE是三角形的中位线根据中位线定理知DE=1/2AC同理其他两条边也有同样的性质.所以DE=EF=DF
分析:(1)可通过全等三角形来证明EN与MF相等,如果连接DE,DF,那么DE就是三角形ABC的中位线,可得出三角形ADE,BDF,DFE,FEC都是等边三角形,那么∠DEF=∠DFM=60°,DE=
学过正弦定理吗?可以用正弦定理做.对BED、DCF分别运用正弦定理再问:这是正三角形,你说的那两个三角形除六十度角之外其它两角并没有关系,正弦定理行不通。再答:这两个有关系吧。BED=DFC=120度
你的题目有错误!放两个图给你参考.再问:小三角形在大三角形的内部,图画出来还是很像的啊,就是看起来是相等的啊,还有在你的第一个图里,AF与AE看起来也很相等啊。再答:夜深了!你现在要做的是赶快睡觉!我
四边形BDEF是平行四边形,通过角度的计算结合全等可以得到S△ABC:S四边形BDEF=1:2
(1)∵D、E、F分别是△ABC的边AB、BC、AC的中点,∴DE=12AC,DF=12BC,EF=12AB,∵等边三角形ABC,∴△DEF是等边三角形,∴△DEF与△ABC相似,相似比是12,(2)
在ABC中,AB=AC,边BC的中点为D.作一个等边三角形DEF,使顶点E,F分别在边AB和AC上,(1),若∠BDE=∠CDF=60°时,EF与BC平行.理由:AB=AC,则∠B=C,又BD=DC,
∵CD=CE∴∠CED=∠CDE=30度(下面省略)∵D为AC中点,ABC为等边三角形∴∠ABC=60,BD是∠ABC的角平分线∴∠DBC=30=∠CED∴BD=ED∵E为BE中点∴DM⊥BE所以BM
∵DE//BC.∴∠ADE=∠B=60°∠AED=∠C=60°所以:△ADE是等边三角形.
因为等边三角形ABC、BDFBE=BD,BA=BC,∠FBD=∠ABC=60所以∠FBA=∠DBC所以△FBA≌△DBC因为D、E分别是AC、BC的中点所以BD⊥AC,AE⊥BC,BD平分∠ABC所以
证明:因为等边三角形ABC中,D,E分别为AC,BC的中点,所以AE⊥BC,BD⊥AC,∠CBD=30°,BD=AE又因为等边三角形BDF所以BF=BD,∠FBD=60°,∠BDF=60,所以BF=A
等于60°.△BEC全等于△CDA,所以∠CBE等于∠ACD,又因为△ABC是等边三角形每个角等于60°,∠ACD+∠BCD=60°,所以∠BCD+∠CBE=60°
(1)作图如下;(2)证明:∵△ABC是等边三角形,D是AC的中点∴BD平分∠ABC(三线合一)∴∠ABC=2∠DBE∵CE=CD∴∠CED=∠CDE又∵∠ACB=∠CED+∠CDE∴∠ACB=2∠E
1)EN=MF,点F在直线NE上2)EN=MF成立连接DE,DF∵∠EDF=∠MDN=∠BDF=60°∴∠NDF=∠BMD∠EDN=∠MDF又,DE=DF,DN=DM∴△DEN≌△DFMEN=MF3)