矩阵论设P是m阶可逆阵,Q是n阶可逆阵,且B=PAQ,证明Q^-1A-
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 16:59:52
因为Aα=λα,所以P^-1Aα=λP^-1α,故(P^-1AP)P^-1α=λP^-1α,可见P^-1α是矩阵P^-1AP属于特征值λ的特征向量.
A为秩是r的m*n矩阵,所以A一定能够经过初等变换变为如下形式:100...0010...0001...0...000...0就是左上角有一个r阶单位阵,其余元素都为0.我们知道,做一次初等行变换就是
B=P^(-1)AP所以B^m=P^(-1)APP^(-1)APP^(-1)AP...P^(-1)AP(m个相乘)=P^(-1)A[PP^(-1)]A[PP^(-1)]A[P...P^(-1)]AP(
教科书中应该有这样的两个结论:1.初等变换不改变矩阵的秩2.可逆矩阵可以表示成初等矩阵的乘积由P,Q可逆,所以它们可以表示成初等矩阵的乘积所以PA相当于对A做若干初等行变换,它的秩不变,即仍是A的秩同
提示:可逆矩阵可以看成若干初等矩阵的乘积.用等价矩阵秩相等去证.
对A做奇异值分解A=USV^T,那么P=UV^T,S=VSV^T即为所求
证明:(P^-1AP)^2=(P^-1AP)(P^-1AP)=P^-1A(PP^-1)AP=P^-1A^2P再问:请问没有具体的解题步骤吗?再答:步骤已经给了呀
∵C是n阶可逆矩阵∴C可以表示成若干个初等矩阵之积,即C=P1P2…Ps,其中Pi(i=1,2,…,s)均为初等矩阵.而:B=AC,∴B=AP1P2…Ps,即B是A经过s次初等列变换后得到的,又初等变
由于C可逆,所以r(AC)=r(A)即有r=r1故(C)正确.
这个命题不对!反例:A=0-101-20-10-1则A可逆但A的3重特征值只有一个线性无关的特征向量,A不能对角化!再问:这是考试一道原题--···而且题目我是原封不动打上来的··
给你例子看看A=[1,0;0,0],B=[0,0;0,1]则因为r(A)=r(B)=1,所以A与B等价.但它们的行向量组,列向量组都不等价注意:若B=PA,即只对A施行初等行变换,则A的行向量组与B的
知识点:n阶可逆矩阵等价于n阶单位矩阵E.因为A,B可逆,所以存在可逆矩阵P1,P2,Q1Q2满足P1AQ1=EP2BQ2=E所以P1AQ1=P2BQ2所以P2^-1P1AQ1Q2^-1=B令P=P2
给你例子看看A=[1,0;0,0],B=[0,0;0,1]则因为r(A)=r(B)=1,所以A与B等价.但它们的行向量组,列向量组都不等价A的行向量组是(1,0),(0,0)B的行向量组是(0,0),
任何矩阵可以经初等变换化成这个样子,一般叫等价标准型再问:我是想知道那个pq是什么东东。再答:P就是初等矩阵的乘积,左边的,Q是右边的初等矩阵乘积再问:我晕,我不是在等你说这两句话。。。书上比你说的还
不仅如此,还有A1.,……,An都相似于对角阵,AiAj=AjAi.(i≠j).则存在公共的满秩方阵P.使P^(-1)AiPi=1,……,n.同时为对角形.(这是1978年武汉大学代数方向硕士生入学复
证:因为(E-BA)[E+B(E-AB)^-1A]=E-BA+B(E-AB)^-1A-BAB(E-AB)^-1A=E-BA+B(E-AB)(E-AB)^-1A=E-BA+BA=E.所以E-BA可逆,且
Aα=λα,两边左乘A,得A^2α=Aλα=λAα=λλα=λ^2α,所以λ^2是A^2的特征根,α是对应的特征向量.答案选C
两个相乘括号打开 整理得E 证明可逆
由于P与Q可以写成有限个初等矩阵的乘积,例如设P=P1P2...Ps,Q=Q1Q2...Qt,所以B=PAQ=P1P2...PsAQ1Q2...Qt,而矩阵A左乘或者右乘初等矩阵相当于对矩阵A做了初等
B^m=B*B^(m-1)=P^(-1)AP*B^(m-1)=P^(-1)AP*P^(-1)AP*B^(m-2)=P^(-1)A^2P*B^(m-2)=...=P^(-1)A^(m-1)P*B=P^(