设A为m*n矩阵,P是m阶可逆矩阵,Q是n阶可逆矩阵,证明:r(A)=r(PA)=r(AQ)=r(PAQ)
设A为m*n矩阵,P是m阶可逆矩阵,Q是n阶可逆矩阵,证明:r(A)=r(PA)=r(AQ)=r(PAQ)
设m*n矩阵A,m阶可逆矩阵P及n阶可逆矩阵Q,矩阵B=PAQ,证明:r(A)=r(B)
设A是m*n矩阵,证明:r(A)=r的充分必要条件是存在m阶可逆矩阵P和n阶可逆矩阵Q,
设P,Q为可逆矩阵,且PA,AQ有意义,则r(PA)=r(AQ)=r(A)
设P为m阶非奇异矩阵,Q为n阶非奇异矩阵,A为m×n阶矩阵,则() R(PA)=R(A),R(AQ)≠R(A
设A使一m×n矩阵,B ,C 分别为m阶,n阶可逆矩阵,证明:r(BA)=r(A)=r(AC)
设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则( )
设A为m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为 r1,矩阵B=AC的秩为r,则
证明:a为秩是r的m*n矩阵 证明存在可逆阵P和Q,使得PA的后m-r行,AQ的后n-r列全为0.
设A、B均为n阶可逆矩阵,证明存在可逆矩阵P、Q,使得PAQ=B
设A为m×n矩阵,C是n阶可逆矩阵,A的秩为r1,B=AC的秩为r,则( ) A.r>r1 B.r=r1 C.r
设A B为n阶矩阵,且r(A)=r(B),则存在可你矩阵P Q,使PAQ=B怎么证明?