矩阵的特征值等于0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 08:29:16
矩阵的特征值等于0
矩阵A的行列式等于0,A的特征值

因为A的所有特征值的乘积等于A的行列式所以|A|=0时,A一定有特征值0.

请教一个矩阵的题,已知三阶非零矩阵,A的平方等于0,求其特征值和Jordan标准型.

A^2=0但A非零,所以A的极小多项式是x^2,所有的特征值都是03阶幂零阵的Jordan型只有三种情况1.三个1阶块2.一个1阶块和一个2阶块3.一个3阶块显然第2种是唯一满足条件的(逐一分析即可)

怎么证明矩阵特征值的和等于矩阵的迹

矩阵的特征多项式,你知道吗?xE-A的那个,把行列式展开,是一个n次多项式.由根系关系可得.特征值的和就等于多项式得根得和,就是第n-1次项的系数,是a11+a22+`````+ann总之,你把那个行

矩阵的特征值和特征向量

显然(A),(B),(C)正确,(D)错误,你哪个选项不理解

矩阵A的n次方等于0,A的特征值是否为0?

特征值是0.设A的特征值为b,对应的特征向量为x,则A^nx=b^nx,因为A^n=0,所以b^nx=0.因为x≠0,所以b^n=0,b=0.

矩阵特征值的题 

请问你是在考试吗?如果是练习的话,你有没有最后的答案?再问:。。。回家作业。。。再答:你有没有最后的答案,如果有,请打出来,我看看我算的对不对,再给你发解法。再问:。。。没有再答:事实上,我对一些概念

矩阵对角线上的和等于特征值之和

对.矩阵对角线上的值之和称为矩阵的“迹”,记作tr(A)可以证明,任何两个相似的矩阵,其"迹"相等.相似矩阵的特征值是一样的,所以A的特征值可以等于某个上三角矩阵的特征值.上三角矩阵的迹就是其特征值之

已知逆矩阵的特征值,怎么求矩阵的特征值

矩阵的特征值等于逆矩阵特征值的倒数,反过来也一样,记住这个定理哦

线性代数:秩等于非0特征值的个数的矩阵满足什么条件?为什么?求指教~

一楼的,你说的不对吧.其实就是满足0特征值对应的所有若当块的阶都是1这个不难理解,显然A的若当标准型和A的秩是一样的如果A的若当型的秩肯定是大于等于对角元非零的数目的.等于的话只能是对角元为0的行和列

设三阶矩阵A有一个特征值为1,且行列式A等于0及A的主对角线元素和为0,求A的另两个特征值!

列式A等于0,故0是A的特征值.所有特征值的和等于矩阵对角上所有元素的和.故1+0+a=0故最后一个特征值为-1

线性代数题目:::矩阵的特征值等于0等不能推出矩阵等于0

特征值为0,不能推出矩阵等于0,反例:A=0  1  00  0  10  0  

为什么矩阵的行列式等于他所有特征值的乘积

因为矩阵可以化成对角元素都是其特征值的对角矩阵,而行列式的值不变,对角矩阵的行列式就是对角元素相乘

设λ=2是可逆矩阵A的一个特征值,则矩阵(A2)-1必有一个特征值等于?

如果(A2)-1意思是(A^2)^-1,则矩阵(A2)-1必有一个特征值等于1/4.设X是λ=2对应的特征向量,则AX=2X,A^2X=AAX=2AX=4X,即A^2X=4X,故得(1/4)X=(A^

若矩阵A的平方等于矩阵A,则A的特征值为?

A的特征值或为0或为1.设A的特征值为a,则存在非零向量x有Ax=ax故A^2x=A(ax)=aAx=a^2x由A^2=A得Ax=a^2x于是得ax=a^2xa=a^2解得a=1或a=0,

请问对于所有的方阵 矩阵所有特征值的乘积等于矩阵的行列式吗

因为若所有的方阵可以通过相似变换得到若当标准型,例如a11a1a2a31a31a3没标的都为0显然这个矩阵的行列式为所有对角线元素,即特征值的乘积而相似变换不改变行列式,所以矩阵所有特征值的乘积等于矩

矩阵的特征值之和等于主对角线元素之和,特征值的乘积等于主对角线元素乘积,为什么?

貌似你问了两边.这两句话,都依赖于,矩阵有n个特征值(重根按重数计算)相似,迹相同,行列式相同,这个不依赖于矩阵有n个特征值,也不依赖于他们可对角化.

怎么证明对称矩阵的所有特征值之和大于等于其最大特征值

对于ATA这样的矩阵才有这个性质,用二次型来证明,不懂再留言吧