矩阵的特征值等于0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 08:29:16
因为A的所有特征值的乘积等于A的行列式所以|A|=0时,A一定有特征值0.
A^2=0但A非零,所以A的极小多项式是x^2,所有的特征值都是03阶幂零阵的Jordan型只有三种情况1.三个1阶块2.一个1阶块和一个2阶块3.一个3阶块显然第2种是唯一满足条件的(逐一分析即可)
矩阵的特征多项式,你知道吗?xE-A的那个,把行列式展开,是一个n次多项式.由根系关系可得.特征值的和就等于多项式得根得和,就是第n-1次项的系数,是a11+a22+`````+ann总之,你把那个行
显然(A),(B),(C)正确,(D)错误,你哪个选项不理解
特征值是0.设A的特征值为b,对应的特征向量为x,则A^nx=b^nx,因为A^n=0,所以b^nx=0.因为x≠0,所以b^n=0,b=0.
请问你是在考试吗?如果是练习的话,你有没有最后的答案?再问:。。。回家作业。。。再答:你有没有最后的答案,如果有,请打出来,我看看我算的对不对,再给你发解法。再问:。。。没有再答:事实上,我对一些概念
一般来讲不相等简单的例子A=0100
对.矩阵对角线上的值之和称为矩阵的“迹”,记作tr(A)可以证明,任何两个相似的矩阵,其"迹"相等.相似矩阵的特征值是一样的,所以A的特征值可以等于某个上三角矩阵的特征值.上三角矩阵的迹就是其特征值之
矩阵的特征值等于逆矩阵特征值的倒数,反过来也一样,记住这个定理哦
一楼的,你说的不对吧.其实就是满足0特征值对应的所有若当块的阶都是1这个不难理解,显然A的若当标准型和A的秩是一样的如果A的若当型的秩肯定是大于等于对角元非零的数目的.等于的话只能是对角元为0的行和列
列式A等于0,故0是A的特征值.所有特征值的和等于矩阵对角上所有元素的和.故1+0+a=0故最后一个特征值为-1
特征值为0,不能推出矩阵等于0,反例:A=0 1 00 0 10 0  
因为矩阵可以化成对角元素都是其特征值的对角矩阵,而行列式的值不变,对角矩阵的行列式就是对角元素相乘
如果(A2)-1意思是(A^2)^-1,则矩阵(A2)-1必有一个特征值等于1/4.设X是λ=2对应的特征向量,则AX=2X,A^2X=AAX=2AX=4X,即A^2X=4X,故得(1/4)X=(A^
A的特征值或为0或为1.设A的特征值为a,则存在非零向量x有Ax=ax故A^2x=A(ax)=aAx=a^2x由A^2=A得Ax=a^2x于是得ax=a^2xa=a^2解得a=1或a=0,
因为若所有的方阵可以通过相似变换得到若当标准型,例如a11a1a2a31a31a3没标的都为0显然这个矩阵的行列式为所有对角线元素,即特征值的乘积而相似变换不改变行列式,所以矩阵所有特征值的乘积等于矩
貌似你问了两边.这两句话,都依赖于,矩阵有n个特征值(重根按重数计算)相似,迹相同,行列式相同,这个不依赖于矩阵有n个特征值,也不依赖于他们可对角化.
是的n阶多项式|A-λE|=0有n个根,重根按重数计.
对于ATA这样的矩阵才有这个性质,用二次型来证明,不懂再留言吧