矩阵A^2-E^2=A EA-E

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 17:28:53
矩阵A^2-E^2=A EA-E
A是n阶矩阵,r(A+E)+r(A-E)=n,证明A^2=E

这个.(a+e0)(0a-e)作初等变换.接着作下去吧.不好打.

已知n阶矩阵A满足 A^2(A-2E)=3A-11E,证明A+2E可逆,并求(A+2E)^-1

因为A^2(A-2E)=3A-11E所以A^3-2A^2-3A+11E=0所以A^2(A+2E)-4A(A+2E)+5(A+2E)+E=0所以(A^2-4A+5E)(A+2E)=E所以A+2E可逆,且

设矩阵A满足A的平方=E,证明A+2E是可逆矩阵

由于(A+2E)(A-2E)=A^2-4E=-3E,所以(A+2E)(-A/3+2E/3)=E,因此A+2E可逆.

设矩阵A满足A^2=E.证明:A+2E是可逆矩阵.

设矩阵A满足A^2=E.===>(A+2E)(A-2E)=5E===>A+2E的逆矩阵为0.2(A-2E).

矩阵 AB+E=A^2+B 求 B= ,

AB+E=A^2+BSO:AB-B=A^2-ESO:(A-E)B=(A-E)(A+E)但是你没说A=E?所以假如A=E很多解假如|A-E|不等于0那么B=A+E

设A为3阶矩阵,且A+E,A+2E,A-3E均为奇异阵,则|A*+4E|=?

可利用特征值如图得出答案是-12.经济数学团队帮你解答,请及时采纳.谢谢!

A-E A+2E 2A-E为奇异矩阵 求|A+3E|

知识点:1.设f(x)是x的多项式.若a是A的特征值,则f(a)是f(A)的特征值2.A的行列式等于A的全部特征值之积.由A-EA+2E2A-E为奇异矩阵所以|A-E|=0,|A+2E|=0,|2A-

设矩阵B=(E+A)^(-1)(E-A),怎么推出(A+E)(B+E)=2E呢?

(A+E)[(E+A)^(-1)(E-A)+E]=(E-A)+(A+E)E=E-A+A+E=2E再问:太谢谢你了!

逆矩阵中A^2+3A-5E=0为什么等于A(A+3E)=5E?

这问题?我有点不敢答了因为A^2+3A-5E=0所以A^2+3A=5E所以A(A+3E)=5E.

A为3阶矩阵,|A-E|=|A-2E|=|A-3E|=0,求|A*-E|

因为|A-E|=0所以|E-A|=(-1)^3*|A-E|=0同理|2E-A|=|3E-A|=|E-A|=0由此我们可以知道,矩阵A的三个特征值的为1,2,3(联系矩阵的特征值的求法)所以矩阵A可逆,

设4阶矩阵A满足|3E-A|,AAT=2E,|A|

AATa=Aλa这不对再问:AAa=Aλa=λAa跟这个不一样么再答:A^T≠A再问:但是AT的特征值也是λ呀??再答:A与A^T的特征值尽管一样但它们的特征向量并不相同!

A^2-3A+4E=0,证明:A+E可逆并求其逆矩阵

因为A^2-3A+4E=(A+E)(A-4E)+8E=0所以(A+E)(A-4E)=-8E所以(A+E)[(-1/8)(A-4E)]=E因为|A+E||A-4E|=|-8E|≠0所以|A+E|≠0所以

A为n阶矩阵,A^2-2A+E=0 求A+2E 解:A^2-2A+E=(A+2E-3E)^2=0 则A+2E=3E 这样

你是从数的结论来处理矩阵x^2=0则x=0但矩阵不是这样.A^2=0不一定有A=0如A=0100

设矩阵A满足A^2+A-4E=0,其中E为单位矩阵,则(A-E)^(-1)=?

由A^2+A-4E=0,所以(A-E)(A+2E)=2E即(A-E)(A/2+E)=E,由逆矩阵的定义可以知道,若在相同数域上存在另一个n阶矩阵B,使得:AB=BA=E.则我们称B是A的逆矩阵,显然(

n阶矩阵A满足A²-3A+2E=0,-证明A-3E是可逆矩阵

刚看到因为A^2-3A+2E=0所以A(A-3E)=-2E所以A-3E可逆,且(A-3E)^-1=(-1/2)A.

已知n阶矩阵A满足矩阵方程A^2-2A-3E=0,且A-E可逆,求A-E的逆矩阵?

因为A^2-2A-3E=0所以A(A-E)-(A-E)-4E=0所以(A-E)^2=4E所以A-E可逆,且(A-E)^-1=(1/4)(A-E).

工程数学与线性代数中的矩阵及其运算中,A^2-E=(A-E)(A+E)也可以等于(A+E)(A-E)吗?

可以这是因为A与E可交换.(A+E)(A-E)=A^2-AE+EA-E^2=A^2-A+A-E=A^2-E.同理也有另一等式.

设n阶矩阵A满足A^2-5A+5E=0,其中E为n阶单位矩阵,则(A-2E)^(-1)=

首先A^2-5A+6E=E,而A^2-5A+6E可分解为(A-2E)x(A-3E),所以(A-2E)^(-1)=A-3E.

设n阶矩阵A满足A^2=E,且|A+E|≠0,证明A=E

/>n阶矩阵A满足A^2=E,===》矩阵A的零化多项式无重根,并且根只能为正负1,===》矩阵A的最小多项式无重根,并且根只能为正负1,===》矩阵A可以对角化,并且矩阵A的特征值只能为正负1,又因