真空中一长为L的均匀带电直杆,总电量为q,试求在直杆

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 23:39:28
真空中一长为L的均匀带电直杆,总电量为q,试求在直杆
真空中的静电场题目,1.一层厚度为0.5cm的无限大平板,均匀带电,电荷密度为0.0001C/m^3.求(1)这薄层中央

1.(1)E=0;;(2)薄层内与其表面相距0.1m处的电场强度E=ρd/2ε0=(10^(-4)*0.3*10^(-2)/2*8.85*10(-12)=1.695*10^(-4)V/m3)薄层外的电

ab是长为L的均匀带电细杆,P1和P2是位于在直线上的两点(P1在杆内离a距离L/4处,P2在杆外离b距离L/4处)ab

将均匀带电细杆分成四小段(均匀分开)命名杆正中为cab上电荷的静电场在P1处的场强即为bc段在P1处的场强ab上电荷的静电场在P2处的场强即为ab段在P2处的场强设ab带电量为Q则E1=0.5Q/0.

真空中有一均匀带电球面,球半径为r,总带电量为q,今在球面上挖出一很小面积ds,设其余部分的电荷仍均匀分布,则挖去以后球

ds面积上的电荷:q*ds/(4πr^2)所以电场强度大小为:E=[kq*ds/(4πr^2)]/r^2=kq*ds/(4πr^4)电场方向由圆心指向小面积ds.再问:你可能没理解意思问的是挖去了ds

真空中有一均匀带电球面,球半径为r,总带电量为q,今在球面上挖出一很小面积ds,设其真空中有一均匀带电球面,

正确的解法应该是完整均匀带电球面的电势(整个球体是等势的)减去ds上的电荷单独存在时在球心处产生的电势——kq/r-k[q(ds/πrr)]/r.你大概是没算kq/r而只算k[q(ds/πrr)]/r

真空中一半径为R的均匀带电球面,电荷密度为σ,在距球心为2R处的电场强度大小为 ----,;电势为-----

由高斯定理可等效为球心点电荷,因此场强为sigma/4epsilon0,电势为r*sigma/2epsilon0再问:是这个答案再答:没错就是这个

真空中半径为R,电量为Q的均匀带电球体的电场和电势的分布

用高斯定理做就可以球面的话r小于等于R时场为零,因为球面内部没有电荷分布,而球体的话如果是均匀带电球体内部是有场分布的再问:能告诉下具体怎么求吗?再答:

真空中一均匀带电薄球壳,半径为R,带电量为Q,求距球心为 处,任意一点 P的电场强度和电势.

分情况考虑,当点r(PQ距离)>R时,根据高斯定理(电通量φ=E*s=4πkQ)可知,P点所在以球壳球心为球心的球上各处电场相等,带电球壳对P点产生的电场等于球壳球心对其产生的电场,再由高斯定理推出E

真空中两块互相平行的无限大均匀带电平面,其电荷密度分别为和,两板间的电场强度为

电荷密度没打出来呢?比如分别为+σ1和+σ2.设电荷面密度为+σ1的为板A,电荷面密度为+σ2的为板B.A板产生的场强大小为E1,根据其对称性,对板A取一圆柱形高斯面,高斯面截面积为s根据高斯定理∮E

如图长度为l的直导线在均匀磁场速度移动电动势

D对.分析:由于在图示方式运动中,导线没有切割磁感线,没有电动势产生.

真空中一长为L的均匀带电细直杆,总电量为q,试求在直杆延长线上到杆的一端距离为d的点P的电场强度

可以把这根杆当做电荷集中在中点进行处理,就变成了点电荷的电场问题:电荷量为q的点电荷,求d+L/2处的电场强度及电势.具体如下:

求电势以及E的问题,真空中有一均匀带电球面,球半径为R总带电量为Q(Q>0),现在球面上挖去很小面积,其上电荷为dq,面

高斯定理指的是如果球面内电荷为0,这整个球面上的总电通量为0.如果球面外有一个点电荷,则球面的一侧有像内的通量,另一侧有向外的通量,二者抵消.但这并不意味着该处的电场为0所以把它当成点电荷计算是正确的

真空中两块互相平行放置的无限大均匀带电平板,其电荷面密度分别为+a和+2a,两板间距为d.

我能不能把电荷面密度用σ来表示,a看起来不太舒服.设电荷面密度为σ的为板A,电荷面密度为2σ的为板B.设板A在两板间产生的场强大小为E1,根据其对称性,其在两板外产生的场强亦为E1,方向相反.对板A取

真空中有一电荷线密度为ρ的无限长均匀带电直线,试求直线外任一点的场强

可以采用高斯定理,作一个以直导线为轴心,底面半径为R,高为L的圆柱封闭面,E×2πRL=ρL/ε.所以E=ρ/(2πRε.)

A、B 为真空中两个平行的“无限大”均匀带电平面……具体题目在图中

根据高斯定理解E=d/e0E为射出高斯体的“净”电场强度,d为面电荷密度,e0为真空介电常数.当高斯体包括两个板时,射出高斯体的“净”电场强度为E0*2/3,所以E0*2/3=(dA+dB)/e0.当

如图所示,一个半径为R的圆环均匀带电,ab是一个极小的缺口,缺口长为L(L

根据对称性,完整的圆环对圆心的电荷产生的电场力为0.把圆环分为两部分,带缺口圆环和长度为L的部分对圆心的电荷产生的电场力互相抵消,即大小相等.单位长度上电荷量为Q2=Q1/(2πR-L)——为书写方便

如图所示为放置在竖直平面内游戏滑轨的模拟装置,滑轨由四部分粗细均匀的金属杆组成,其中水平直轨AB与倾斜直轨CD长均为L=

(1)根据动能定理得,12mv12-Ek0=-μmgLcosθ-μmgL代入解得v1=12m/s≈3.4m/s(2)小球第一次回到B点时的动能EK1=12mv12=6J,继续运动,根据动能定理得,mg