设椭圆C:x2/a2+y2/2=1(a>0)的左,右焦点分别为F1,F2,A是椭圆C上一点,向量AF2*向量F1F2=0
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 19:04:58
设椭圆C:x2/a2+y2/2=1(a>0)的左,右焦点分别为F1,F2,A是椭圆C上一点,向量AF2*向量F1F2=0,坐标原点O
到直线AF1的距离为1/3|OF1|.求椭圆C的方程
到直线AF1的距离为1/3|OF1|.求椭圆C的方程
解 :∵向量AF2·向量F1F2=0,所以AF2⊥F1F2.又作ON⊥AF1,
又坐标原点O到直线AF1的距离为1/3丨OF1丨,即:ON/OF1=1/3.
又OF1=c (c为半焦距长),∴ON=c/3 ,
又∠ONF1=90°,由勾股定理得:NF1 = (2√2/3)·c
又∵RtΔONF1∽RtΔAF2F1(AAA),
∴AF2/F1F2=ON/NF1,即:AF2/2c = 【c/3】/【(2√2/3)·c】= 1/2√2
∴AF2=(√2/2)·c.①
又∠AF2F1=90°,由勾股定理得:AF1=(3√2/2)·c.②
.
由椭圆第一定义得:AF1+AF2=2a,即:(√2/2)·c+(3√2/2)·c= 2a
∴√2·c=a 又b²=a²-c²=2 ∴2c²=a²=2(a²-2) ∴a²=4
∴椭圆C的方程为:x²/4+y²/2=1
又坐标原点O到直线AF1的距离为1/3丨OF1丨,即:ON/OF1=1/3.
又OF1=c (c为半焦距长),∴ON=c/3 ,
又∠ONF1=90°,由勾股定理得:NF1 = (2√2/3)·c
又∵RtΔONF1∽RtΔAF2F1(AAA),
∴AF2/F1F2=ON/NF1,即:AF2/2c = 【c/3】/【(2√2/3)·c】= 1/2√2
∴AF2=(√2/2)·c.①
又∠AF2F1=90°,由勾股定理得:AF1=(3√2/2)·c.②
.
由椭圆第一定义得:AF1+AF2=2a,即:(√2/2)·c+(3√2/2)·c= 2a
∴√2·c=a 又b²=a²-c²=2 ∴2c²=a²=2(a²-2) ∴a²=4
∴椭圆C的方程为:x²/4+y²/2=1
设椭圆C:x2/a2+y2/2=1(a>0)的左,右焦点分别为F1,F2,A是椭圆C上一点,向量AF2*向量F1F2=0
设椭圆c:x^2/a^2+y^2/2=1(a>0)的左右焦点分别为F1、F2,A是椭圆C上一点,且向量AF2*向量F1F
设椭圆x2/a2+y2/b2=1(a>b>0)的左,右焦点分别为F1,F2.点p(a,b)满足|PF1|=|F1F2|
F1F2分别是椭圆C:x2/a2+y2/b2=1(a﹥b﹥0)的左,右焦点
F1F2分别是椭圆C:x2/a2+y2/b2=1(a﹥b﹥0)的左,右焦点,A是椭圆C的顶点,
已知椭圆方程是x2/a2+y2/b2=1(a>b>0),F1,F2是它的左、右焦点,P是椭圆上任意一点,若向量PF1*向
设椭圆x2/a2+y2/b2=1(a>b>0)的左`,右焦点分别为F1,F2,若直线x=a2/c上存在点P,使PF1的中
椭圆C:x2/a2+y2/b2=1(a>b>0)的左,右焦点分别为F1(-1,0),F2(1,0 )
已知椭圆 x2/a2+y2/b2=1上任意一点A ,F1和F2为左右焦点,向量AF1垂直于F1F2,向量AF1与AF2的
如图,已知椭圆C:x2/a2+y2/b2=1,(a>b>0)的22左、右焦点为F1、F2,其上顶点
已知椭圆C:(x^2)/4+(y^2)/3=1 设椭圆C右焦点为F2,A、B是椭圆上的点,且向量AF2=向量2F2B,求
设椭圆x^2/a^2+y^2/b^2=1(a>0,b>0)的左右焦点分别为f1,f2,A是椭圆上一点,AF2垂直F1F2