由曲线y等于根号x与直线x=1.直线x=4
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 03:08:10
你好!第一步画图,找交点【过程略】第二步,以y为积分变量求面积S=∫[(y+2)-y²]dy=[-1/3y³+y²/2+2y]=16/3
解析y=x^2和y=kx+1总有2个交点所以联立解总有2个解的所以x^2-(kx+1)=0x^2-kx-1=0b^2-4ac>0sok^2-4*-1>0k^2>-4k的取值范围R
y=x和y=1/x交点(1,1)1
设直线方程为y=kx,代入椭圆方程得x^2+3k^2*x^2=3,即x^2=3/(3k^2+1),所以y^2=k^2*x^2=3k^2/(3k^2+1),由于所截得的线段长为根号6,因此,x^2+y^
把y=k(x+1)代入曲线方程得,k(x+1)=√(2x-x²)两边平方,并化简,得,(k²+1)x²+2(k²-1)x+k²=0Δ=[2(k&sup
y =√x和y = x -2的交点为A(4, 2), 另一点为增根,舍去.= ∫(1,2)[√x - (x-2
曲线y=根号x与直线y=x交点是(0,0)与(1,1)由曲线y=根号x与直线y=x所围成的图形的面积S(上1下0)(根号x-x)dx=(上1下0)(2/3*x^(3/2)-1/2*x^2)=1/6
#include#includeintmain(intargc,char**argv){\x05constdoubledelta=0.0001;\x05constdoublefinal=1;\x05d
#include#includeintmain(intargc,char**argv){\x05constdoubledelta=0.0001;\x05constdoublefinal=1;\x05d
用微积分算∫(4,9)2√xdx=76/3
如果你没有学导数:设所求直线为y=a(x+1),曲线y=根号x单调递增,其切线必然与该曲线只有切点这一个交点.也就是说联立两方程只有唯一解,联立得到(ax)^2+(2a^2-1)x+a^2=0,该方程
y=根号x与直线x=1,x=4,y=0围成的平面图形绕Y轴旋转所得旋转的体积:2π∫xydx=2π∫x^3/2dx=4π/5∫dx^5/2积分上限是4,下限是2所以体积是124π/5
联立两个方程求交点的x坐标:x²-1=x,求得x1=(1-√5)/2,x2=(1+√5)/2,那么两曲线围成的图形面积S=∫x1→x2(x^2/2-x^3/3+x)=(x2^2/2-x2^3
用积分的方法,对(根号x)从0到1积分,去掉积分号就是2/3乘x^(3/2)从0到1,算得2/3,再乘两倍就是4/3
若直线y=k(x+1)与曲线y=sqrt(2x-x^2)有公共点,则如下等式有实数解:k(x+1)=sqrt(2x-x^2)化简得到:(k^2+1)x^2+(2k^2-2)x+k^2=0由2x-x^2
由曲线y=根号x与直线x=1及x轴所围成的图形,绕x轴旋转所得的旋转体的体积.V1=∫pi*y^2dx从0到1=∫pi*xdx从0到1=pi*x^2/2|从0到1=pi(1-0)/2=pi/2由曲线y