满足条件A^TA=AA^T=E的n阶正交矩阵
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:10:14
E+A^T=(E+A)^T两边取行列式|E+A^T|=|(E+A)^T|=|E+A|再问:甚妙甚妙!!!非常感谢!这个题我明白了。但是这个题里面A^T=A这个式子能不能成立呢?也就是说,已知AA^T=
|A-E|=|A-AA^T|=|A(E-A^T)|=|A||E-A^T|=|A||E-A|---(E-A^T)^T=E-A=|A|(-1)^(2n+1)|A-E|=-|A||A-E|所以|A-E|(1
这题目怪怪的由|2E+A|=0可知A必有一个特征值-2前面那些条件又是在干什么?奇怪!
|A+E|=|A+AA'|=|A(E+A')|=|A||E+A'|=-|E+A'|=-|A+E|,则|A+E|=0.-|E+A'|=-|A+E|:矩阵的转置的行列式与此矩阵的行列式相等(行列式的性质)
只要证明0是特征值即可.经济数学团队帮你解答.请及时评价.谢谢!再问:问一下再问:a为n维列向量,a∧Ta=1,aa∧T会等于E吗再答:一般不会,r(aa^T)
AA'=E,是吧等式两边取行列式得|A|^2=1因为|A|
AA^T=E,|A|×|A^T|=|A|^2=1,|A|=1或-1.|A|<0,所以|A|=-1.A+E=A+AA^T=A(E+A^T)|A+E|=|A|×|E+A^T|=|A|×|A+E|=-|A+
|A(A^T-E^T)|=|A||A^T-E^T|=|A||(A-E)^T|=|A||A-E|注:知识点|A^T|=|A|.
一个更正,问题中的“a=2/3”似乎有误,应为“a^Ta=2/3”首先可知A是一个对称阵,那么AA^T=E就等价于(E-3aa^T)(E-3aa^T)=E,展开就得E-6aa^T+9(a^Ta)(aa
A-E=A-AA^T=A(E-A^T)=A(E-A)^T,两边取行列式,得|A-E|=|A|×|(E-A)^T|=|E-A|=(-1)^n×|A-E|=-|A-E|所以,|A-E|=0
R(A)=n-1,首先可以确定,A的基础解系所含的解向量个数是n-(n-1)=1个那么就很简单了,找一个向量,代入AX=0可以使之成立就行了.利用题目的暗示,这个向量可能是a我们试一试代入AX=0(E
由AA^T=2E得|A|^2=2^4由|A|
证明:因为AA'=EA^(T)用A'表示所以|A+E|=|A(A+E')|=|A||A'+E|=|A||A+E|=-|A+E|则|A+E|=-|A+E|=0
一个矩阵的转置的行列式=该矩阵的行列式所以|(E-A)^T丨=|(E-A)丨从而丨-A(E-A)^T丨=(-1)^(n)丨A丨丨E-A丨=(-1)^(2k+1)丨A丨丨E-A丨(n是奇数,令之为2k+
首先由|A+3E|=0知-3是A的一个特征值(a是A的特征值当且仅当|A-aE|=0),所以A^(-1)有特征值1/(-3)=-1/3;由AA^T=2E知|AA^T|=2,所以|A||A^T|=|A|
a^Ta=(E-2aa^t)^T(E-2aa^t)=(E-2aa^t)(E-2aa^t)=E-2aa^t-2aa^t+4aa^taa^t=E-4aa^t+4a(a^ta)a^t=E-4aa^t+4aa
1,2成立推导3成立。AAT=E①,AT=A②,②带入①则3成立。1,3成立推导2成立。AAT=E①,A²=E②,①②分别左乘A-1,得,AT=A-1,A=A-1,则2成立。2,3成立推导1
你是问的下面这三个等式为什么成立,还是你的标题的题目呢?如果是下面这三个等式的话第一个等式是因为(E+A')=E'+A'=(E+A)'第二个等式是因为一个矩阵的行列式与它的转置的行列式相等.
由已知,得AA^T=A^TA=E,BB^T=B^TB=E|A|,|B|等于1或-1因为|A|+|B|=0所以|A|,|B|必为一正一负所以|A||B|=-1所以|A^T||B^T|=-1所以-|A+B