满足条件A^TA=AA^T=E的n阶正交矩阵

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:10:14
满足条件A^TA=AA^T=E的n阶正交矩阵
设A是n阶矩阵,满足AA^T=E(E是n阶单位矩阵),A^T是A的转置矩阵,且|A|

E+A^T=(E+A)^T两边取行列式|E+A^T|=|(E+A)^T|=|E+A|再问:甚妙甚妙!!!非常感谢!这个题我明白了。但是这个题里面A^T=A这个式子能不能成立呢?也就是说,已知AA^T=

设A为2n+1阶方阵,且满足AA^T =E,|A|>0,证明行列式|A-E|=

|A-E|=|A-AA^T|=|A(E-A^T)|=|A||E-A^T|=|A||E-A|---(E-A^T)^T=E-A=|A|(-1)^(2n+1)|A-E|=-|A||A-E|所以|A-E|(1

设n阶矩阵A满足条件AA^T=4E,|A|>0,又|2E+A|=0,则必有一个特征值为?

这题目怪怪的由|2E+A|=0可知A必有一个特征值-2前面那些条件又是在干什么?奇怪!

证明:若A是n阶矩阵,且满足AA^T=E,|A|=-1,则|E+A|=0

|A+E|=|A+AA'|=|A(E+A')|=|A||E+A'|=-|E+A'|=-|A+E|,则|A+E|=0.-|E+A'|=-|A+E|:矩阵的转置的行列式与此矩阵的行列式相等(行列式的性质)

设a为n维列向量,且a∧Ta=1,矩阵A=E-aa∧T,证明A的行列式等于0

只要证明0是特征值即可.经济数学团队帮你解答.请及时评价.谢谢!再问:问一下再问:a为n维列向量,a∧Ta=1,aa∧T会等于E吗再答:一般不会,r(aa^T)

线性代数问题:设A是n阶矩阵,满足AA'=|E|,|A|

AA'=E,是吧等式两边取行列式得|A|^2=1因为|A|

问一道线性代数题:设A为n阶方阵,满足AA^T=E(E是n阶单位矩阵),|A|

AA^T=E,|A|×|A^T|=|A|^2=1,|A|=1或-1.|A|<0,所以|A|=-1.A+E=A+AA^T=A(E+A^T)|A+E|=|A|×|E+A^T|=|A|×|A+E|=-|A+

线性代数,已知A是2n+1阶矩阵正交矩阵,即AA^T=A^TA=E,证明E-A^2的行列式为零

|A(A^T-E^T)|=|A||A^T-E^T|=|A||(A-E)^T|=|A||A-E|注:知识点|A^T|=|A|.

矩阵证明题:若n阶方阵满足AA^T=E,设a是n维列向量,a^Ta=/0矩阵A=E-3aa^T.

一个更正,问题中的“a=2/3”似乎有误,应为“a^Ta=2/3”首先可知A是一个对称阵,那么AA^T=E就等价于(E-3aa^T)(E-3aa^T)=E,展开就得E-6aa^T+9(a^Ta)(aa

设A是n阶矩阵,n是奇数,满足AA^T=E,/A/=1,求/A-E/

A-E=A-AA^T=A(E-A^T)=A(E-A)^T,两边取行列式,得|A-E|=|A|×|(E-A)^T|=|E-A|=(-1)^n×|A-E|=-|A-E|所以,|A-E|=0

线性代数!设a为n维列向量,且a^Ta=1,令A=E-aa^T,其中E是n阶单位矩阵,

R(A)=n-1,首先可以确定,A的基础解系所含的解向量个数是n-(n-1)=1个那么就很简单了,找一个向量,代入AX=0可以使之成立就行了.利用题目的暗示,这个向量可能是a我们试一试代入AX=0(E

A是4阶矩阵,且满足AA^T=2E,|A|

由AA^T=2E得|A|^2=2^4由|A|

若A是n阶矩阵,且满足AA^(T)=E,|A|=—1,则|E+A|=0

证明:因为AA'=EA^(T)用A'表示所以|A+E|=|A(A+E')|=|A||A'+E|=|A||A+E|=-|A+E|则|A+E|=-|A+E|=0

若A是n阶矩阵,n是奇数,满足AA^T=E,丨A丨=1,证明E-A不可逆

一个矩阵的转置的行列式=该矩阵的行列式所以|(E-A)^T丨=|(E-A)丨从而丨-A(E-A)^T丨=(-1)^(n)丨A丨丨E-A丨=(-1)^(2k+1)丨A丨丨E-A丨(n是奇数,令之为2k+

设4阶方阵A满足/A+3E/=0,AA^T=2E,矩阵/A/

首先由|A+3E|=0知-3是A的一个特征值(a是A的特征值当且仅当|A-aE|=0),所以A^(-1)有特征值1/(-3)=-1/3;由AA^T=2E知|AA^T|=2,所以|A||A^T|=|A|

线性代数问题 设a为n维列向量,且a∧Ta=1,矩阵A=E-2aa∧T,证明A是正交

a^Ta=(E-2aa^t)^T(E-2aa^t)=(E-2aa^t)(E-2aa^t)=E-2aa^t-2aa^t+4aa^taa^t=E-4aa^t+4a(a^ta)a^t=E-4aa^t+4aa

线性代数设A是n阶方阵,证明:当1.AA∧T=E,2.A∧T=A,.3.A∧2=E中有两个条件满足时,一定满足第三个条件

1,2成立推导3成立。AAT=E①,AT=A②,②带入①则3成立。1,3成立推导2成立。AAT=E①,A²=E②,①②分别左乘A-1,得,AT=A-1,A=A-1,则2成立。2,3成立推导1

.设A为n阶方阵,且满足AA^T =E和|A|=-1,证明行列式|E+A|=0.

你是问的下面这三个等式为什么成立,还是你的标题的题目呢?如果是下面这三个等式的话第一个等式是因为(E+A')=E'+A'=(E+A)'第二个等式是因为一个矩阵的行列式与它的转置的行列式相等.

设A,B均为N阶方阵,满足AA(T)=E,B(T)B=E.|A|+|B|=0.证明:|A+B|=0.A(T)为A的转置.

由已知,得AA^T=A^TA=E,BB^T=B^TB=E|A|,|B|等于1或-1因为|A|+|B|=0所以|A|,|B|必为一正一负所以|A||B|=-1所以|A^T||B^T|=-1所以-|A+B