fx=x a lnx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 23:44:27
f(x)=ax²+bx+cf(0)=0+0+c=1c=1f(x+1)-f(x0=a(x+1)²+b(x+1)+c-ax²-bx-c=2ax+a+b=2x所以2a=2a+b
f(x)-g(x)=1-x^2-x^3以-x代入上式得:f(-x)-g(-x)=1-x^2+x^3,即-f(x)-g(x)=1-x^2+x^3两式相加再除以2得:-g(x)=1-x^2,得:g(x)=
f(x)=f(2-x)又因为f(x)是偶函数,所以:f(x)=f(-x);所以:f(-x)=f(2-x)即:f(x)=f(x+2)所以,f(x)是周期函数,最小正周期是2如果不懂,请Hi我,再问:f(
/>设f(x)=ax²+bx+c,因为f(0)=0+0+c=1,所以f(x)=ax²+bx+1,所以f(x+1)-f(x)=a(x+1)²+b(x+1)+1-(ax
fx=-1/2x²+lnx,显然x>0f'x=-x+1/x=(1-x²)/x令f'x1所以,fx在(1,+无穷)上单调递减fx在(0,1)上单调递增在(1/e,e)上,f(x)ma
f(x-8)=f[(x-4)-4]=-f(x-4)∵f(x-4)=-f(x)∴f(x-8)=f(x)即f(x)=f(x+8),f(x)以8为周期
f(-x)=lg(√x2+1+x)=lg(1/(√x2+1-x))=-lg(√x2+1-x)=-f(x)所以在定义域范围内为奇函数.
1、f(x+a)=-f(x)f(x+a+a)=-f(x+a)=f(x)即f(x+2a)=f(x),周期就是2a2、f(x+a)=1/f(x)f(x)=1/f(x+a)f(x+a+a)=1/f(x+a)
证明:由于:f(x+y)=f(x)+f(y)则:令x=y=0则有:f(0+0)=f(0)+f(0)f(0)=2f(0)则:f(0)=0再令:y=-x则有:f[x+(-x)]=f(x)+f(-x)f(0
解析:∵f(x)=-1/f(x+2)令x=x+2代入得f(x+2)=-1/f(x+4)∴-1/f(x+4)=-1/f(x)∴f(x)=f(x+4)选择C再问:再问:请问能再问一题吗?11题的最后一小问
解题思路:数列递推运算,由递推公式知道第一项求其他项解题过程:由得答案D最终答案:由得
f(x)+2f(1/x)=3x……①令x=1/x得f(1/x)+2f(x)=3/x……②①②联立解得f(x)=2/x-x∴f(2)=2/2-2=1-2=-1因此f(2)的值为-1.再问:联立那儿我有点
(1) 等式化简后:f(2)=±(√19/2)+3
首先:(1)f(-1)=a-b+1=0b=a+1从f(-1)=0,f(x)的值都是正的,可以得到抛物线一定是开口向上的,所以a>0.又:f(x)=ax^2+(a+1)x+1=a(x^2+[(a+1)/
所以f(-x)-g(-x)=x^2+x所以-f(x)-g(x)=x^2+xf(x)+g(x)=-x^2-x②f(x)-g(x)=x^2-x①①+②得2f(x)=-2xf(x)=x带入①得x-g(x)=
答:f(x)和h(x)都关于y轴对称f(x)=lg(1+x²),定义域为实数范围Rf(-x)=lg(1+x²)=f(x),为偶函数,关于y轴对称g(x)=x^(1/2),定义域x>
1.先对Fx求导,由题意知F`(1/2)=0可得出a的值2.由F`(x)=2a^2,再根据x的范围可解
f(x)的定义域取值的集合应只有两个元素,即正1和负1.显然x的值不能取0,现假设f(x)可以取其他的值a,那么有f(a)+f(1/a)=3a,同样有f(1/a)+f(a)=3/a,比较上面两等式的左