f(x)=x-2∫f(t)dt,,求f(x) 那个积分是定积分区间是(0,1)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 13:47:44
f(x)=x-2∫f(t)dt,,求f(x) 那个积分是定积分区间是(0,1)
f(x)连续且f(x)=x+(x^2)∫ (0,1)f(t)dt,求f(x)

两边求两次导,然后就象解决微分方程一样解决它

f(x)为偶函数,证明F(x)=∫[0,x](2t-x)f(t)dt也为偶函数

F(x)=∫[0,x](2t-x)f(t)dt=∫[0,x]2tf(t)dt-x*∫[0,x]f(t)dtF(-x)=∫[0,-x]2tf(t)dt+x*∫[0,-x]f(t)dt换元,令u=-t,d

f(x)=xsinx-∫(0~x)(x-t)f(t)dt ,f(x)连续 求f(x)

f(x)=xsinx-x∫[0→x]f(t)dt+∫[0→x]tf(t)dtf(0)=0f'(x)=sinx+xcosx-∫[0→x]f(t)dt-xf(x)+xf(x)=sinx+xcosx-∫[0

f(x)=∫(0,2x)f(t/2)dt+ln2,显然f(0)=ln2 两边求导 f'(x)=f(2x/2)*(2x)'

如果要d(x/2)的话,注意积分上下限可能有更变的.将t变为t/2,d(t/2)=(1/2)dt==>dt=2d(t/2)当t=0时,t/2=0当t=2x时,t/2=2x/2=x所以∫(0→2x)f(

已知f(x)=e^x+4∫f(t)dt,求∫f(x)dx

显然积分项会得到一个常数所以令C=4∫f(t)dtf(x)=e^x+C代回C=4积分(e^t+C)dtC=4[e^t+Ct]|C=4(e+C-1-0)C=4e+4C-44-4e=3CC=(4-4e)/

求导数!F(x)=∫ -9到sin(x) cos(t^2+t))dt 所以,F’(x)=?

令g(u)=∫(-9→u)cos(t^2+t)dt,u=sinx,则F(x)=g(sinx),所以F'(x)=g'(u)u'=cos(u^2+u)cosx,即F'(x)=cosxcos[(sinx)^

设f(x)=∫(1,x^2) e^(-t)/t dt,求∫(0,1)xf(x)dt

f(x)=∫(1→x²)e^(-t)/tdtf'(x)=2x·e^(-x²)/x²=2e^(-x²)/xf(1)=0,∵上限=下限∫(0→1)xf(x)dx=∫

∫(0,x)f(t-x)dt=e^(-x²)+1 求f(x)

∫(0,x)f(t-x)dt=e^(-x²)+1令u=t-x0

①设f(x)=x+2∫(0,1)f(t)dt,求f(x).

第一题:令f(x)=y方便计算对方程直接求导得y的导数为1.则令y=x+a代入原方程得x+a=x+2∫(0,1)(t+a)dt化简方程得a=1+2a求得a=-1所以y=x-1第二题:先化简方程∫(0,

F(x)=(定积分0→x)(x^2-t^2)f(t)dt

F(x)=∫[0,x](x^2-t^2)f(t)dt=x^2∫[0,x]f(t)dt-∫[0,x]t^2f(t)dtF'(x)=2x∫[0,x]f(t)dt+x^2f(x)-x^2f(x)=2x∫[0

设f(x)=sinx+∫_{0}^{x}t*f(t)dt -x∫_{0}^{x}f(t)dt ,其中f(x)为连续函数,

f(x)=sinx+∫_{0}^{x}t*f(t)dt-x∫_{0}^{x}f(t)dt(1)两边对x求导得:f'(x)=cosx+xf(x)-∫_{0}^{x}f(t)dt-xf(x)即:f'(x)

f(x)连续,g(x)=∫ t^2f(t-x)dt,求g'(x)

这个题目吧,很把f(t-x)中的x分离出来令t-x=ydt=dyt=0,y=-xt=x,y=0g(x)=∫[-x,0](x+y)^2f(y)dy=x^2∫[-x,0]f(y)dy+2x∫[-x,0]y

设f(x)=sinx-∫(0~t)(x-t)f(t)dt,f为连续函数,求f(x).

f(x)=sinx-∫(0~x)(x-t)f(t)dt=sinx-x∫(0~x)f(t)dt+∫(0~x)tf(t)dt,之后两边对x求导f'(x)=cosx-[x'·∫(0~x)f(t)dt+x·f

已知f(x)=x-2∫f(t)dt 上限1 下限0 求f(x)

一楼做的完全不对!此题应该先设:∫f(t)dt上限1下限0=m,所以原式可写为f(x)=x-2m.(1)对(1)式在(0,1)上再积分:∫f(x)dx上限1下限0=∫(x-2m)dx上限1下限0=m求

8、设f(x)为可导函数,且满足∫0到x f(t)t^2 dt=f(x)+3x 求f(x)

∫(0,x)f(t)t^2dt=f(x)+3x,令x=0,那么:f(0)=0两边求导得:f(x)x^2=f'(x)+3,f'(x)=f(x)x^2-3,这是一阶线性方程,通解为:f(x)=e^(x^3

设连续函数f(x)满足f(x)=e^x-∫(0,x)f(t)dt,求f(x)

土豆团邵文潮为您答疑解难,如果本题有什么不明白可以追问,请谅解,

已知,f(x)=1/2x^2+∫(0-x) f(t)dt,求f(x)

两边求导,得f'(x)=x+f(x)即求微分方程y'=y+x对应齐次方程y'=y的解为y=Ce^x用常数变易法,设y=ue^xy'=(u+u')e^x,代入得u'=xe^(-x)u=-xe^(-x)-

设函数y=∫(0,x)(x-t)f(t)dt,f(x)为连续函数,

f(x)=e^x-∫(0,x)(x-t)f(t)dt=e^x-x∫(0,x)f(t)dt+∫(0,x)t*f(t)dt可知f(0)=1求导:f'(x)=e^x-∫(0,x)f(t)dt-x*f(x)+

x=f(t),dx=f'(t)dt

x=f(t)dx=df(t)=(df(t)/dt)*dt=f'(t)dt